Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Transl Oncol ; 22(7): 1155-1165, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31748959

RESUMO

BACKGROUND AND PURPOSE: Emerging evidence suggests that one of the main reasons of chemotherapy treatment failure is the development of multi-drug resistance (MDR) associated with cancer stem cells (CSCs). Our aim is to identify a therapeutic strategy based on MDR-reversing agents. MATERIALS AND METHODS: CSC-enriched Ehrlich carcinoma (EC) cell cultures were prepared by drug-resistant selection method using different concentrations of cisplatin (CIS). Cell cultures following drug exposure were analyzed by flow cytometry for CSC surface markers CD44+/CD24-. We isolated murine bone marrow-derived dendritic cells (DCs) and then used them to prepare CSC-DC vaccine by pulsation with CSC-enriched lysate. DCs were examined by flow cytometry for phenotypic markers. Solid Ehrlich carcinoma bearing mice were injected with the CSC-DC vaccine in conjunction with repeated low doses of CIS. Tumor growth inhibition was evaluated and tumor tissues were excised and analyzed by real-time PCR to determine the relative gene expression levels of MDR and Bcl-2. Histopathological features of tumor tissues excised were examined. RESULTS AND CONCLUSION: Co-treatment with CSC-DC and CIS resulted in a significant tumor growth inhibition. Furthermore, the greatest response of downregulation of MDR and Bcl-2 relative gene expression were achieved in the same group. In parallel, the histopathological observations demonstrated enhanced apoptosis and absence of mitotic figures in tumor tissues of the co-treatment group. Dual targeting of resistant cancer cells using CSC-DC vaccine along with cisplatin represents a promising therapeutic strategy that could suppress tumor growth, circumvent MDR, and increase the efficacy of conventional chemotherapies.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Vacinas Anticâncer/farmacologia , Carcinoma de Ehrlich/imunologia , Cisplatino/farmacologia , Células Dendríticas/imunologia , Resistencia a Medicamentos Antineoplásicos , Células-Tronco Neoplásicas/imunologia , Animais , Carcinoma de Ehrlich/genética , Carcinoma de Ehrlich/patologia , Camundongos , Proteínas Proto-Oncogênicas c-bcl-2/genética
2.
Clin Transl Oncol ; 21(5): 636-645, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30368725

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the common malignancies, characterized by poor response to conventional therapeutic options. Immunotherapy with dendritic cells (DCs)-vaccines is one of the most successful strategies used for the treatment of HCC. However, the methods applied in the preparation of antigen-loaded DCs are important factors for optimization of DCs vaccines. PURPOSE: The present study was conducted to investigate the effect of HCC-whole tumor cell lysate prepared using rapid repetitive freeze-thaw cycles on the immunogenicity of DCs and evaluate the ability of whole tumor cell lysate-pulsed DCs vaccine to induce a specific cytotoxic T lymphocytes (CTLs) response against HepG2 cell line. METHODS: Immature DCs generated from peripheral blood monocytes were randomized into two groups: control DCs and whole tumor cell lysate-pulsed DCs. Phenotypic analysis of the DCs' cell maturation marker CD83 and co-stimulatory molecule CD86 was performed. HCC-specific cytotoxic activity of CD8+ CTLs was measured in vitro. RESULTS: Loading of DCs with necrotic whole cell lysate resulted in non-significant changes in DCs' expression of CD83, but a significant increase in expression of CD86. In addition, CD8+ CTLs stimulated with whole tumor cell lysate-pulsed DCs showed a high cytotoxic activity that specifically attack HepG2 cells. CONCLUSION: Our findings indicated that pulsation of DCs with whole tumor cell lysate prepared by repetitive freeze-thaw cycles could efficiently enhance the ability of DCs to induce proliferation and clonal expansion of CD8+ CTLs. Data herein, also indicated that whole tumor cell lysate-pulsed DCs triggers a specific CD8+ CTLs against HCC tumor cells.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Carcinoma Hepatocelular/imunologia , Células Dendríticas/imunologia , Neoplasias Hepáticas/imunologia , Monócitos/imunologia , Linfócitos T Citotóxicos/imunologia , Carcinoma Hepatocelular/patologia , Células Cultivadas , Células Hep G2 , Humanos , Técnicas In Vitro , Neoplasias Hepáticas/patologia
3.
J Genet Eng Biotechnol ; 13(2): 185-192, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30647582

RESUMO

BACKGROUND: Extracts of Echinacea have been used traditionally for the treatment of diverse types of infections and wounds. They have become very familiar immunostimulant herbal medicine. However, the specific immunomodulatory effect of Echinacea remains to be elucidated. AIM: In our study, the effect of Echinacea purpurea extract on the generation of immature DCs from monocytes was described, as well as its effect on DC differentiation. In addition, an in vivo experiment was conducted to investigate whether treatment of mice with extracts derived from E. purpurea has immunomodulatory effect on murine splenic DCs. METHODS: Immature DCs were generated by incubating peripheral blood monocytes with cytokine cocktail (GM-CSF + IL-4) and matured by tumor necrosis factor-α (TNF-α). The cells were randomized to 5 groups to investigate E. purpurea effect in different stages. Phenotypic analysis of cell marker CD83-expressed on DCs was performed by flow cytometry. Mice were randomly divided into 3 groups; control, E. purpurea treated and E. purpurea-TNF-α treated group. The murine splenic DCs were isolated and phenotyped for CD83 and CD11c by flow cytometry. RESULTS: Treatment of monocytes with E. purpurea prior to addition of the maturation factor TNF-α resulted in a significant decrease in the yield of DC expressing CD83. On the other hand, immature DCs generated in the culture in the presence of GM-CSF and IL-4, when treated simultaneously with E. purpurea and TNF-α, exhibited an insignificant change in the yield of CD83-expressing DCs compared with untreated control. The in vivo experiments showed that splenic DCs obtained from mice treated with E. purpurea with or without TNF-α did not exhibit significant changes in CD83 or CD11c compared with those obtained from control mice. CONCLUSION: Our findings suggest that the immunomodulatory mechanisms of E. purpurea impact generation fate of DCs rather than differentiation stages. The results obtained in the in vivo study utilizing murine splenic DCs supported those observed in vitro.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA