Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612146

RESUMO

This study investigated how different rest times affect the strength development of fly-ash-based alkali-activated mortar (AAM) over a period of 90 days. Two types of fly ash with varying calcium oxide contents of 37 and 21% were used. The rest times ranged from 2 to 36 h, and three curing methods (ambient, oven, and steam) were tested. The results showed that the rest time significantly influenced the compressive strength of the AAM. The optimal rest time was found to be between 12 and 30 h depending on the curing method and fly ash type. Beyond this range, there were only minor changes in strength. One type of fly ash (FA21) showed higher strength with longer rest times up to 30 h, while the other type (FA37) had the highest strength within a rest time range of from 12 to 24 h. Over the 90-day period, the specimens cured under ambient, oven, and steam conditions at 55 °C (131 °F) experienced increasing strength, but those steam-cured at 80 °C (176 °F) showed a decrease in strength. Analysis revealed the formation of hydration products in FA37, while FA21 showed a reduction in peaks for its main compounds. Additionally, XRD analysis revealed the formation of hydration products (CSH and CASH) in FA37, while FA21 displayed a reduction in peaks for its main compounds. EDS analysis indicated the presence of partially unreacted FA particles, highlighting the impact of curing methods on dissolving FA particles and the formation of geopolymer products (NASH and CNASH) responsible for compressive strength development.

2.
Cureus ; 13(1): e12428, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33542875

RESUMO

This review assesses the validity of a biomechanical approach using finite element analysis in the Thoracolumbar Injury Classification and Severity Score System (TLICS) by addressing the "gray zone" decision discrepancy of thoracolumbar spinal injuries. A systematic review was performed using the keywords "Thoracolumbar Injury Classification" AND "finite element analysis of the spinal column" to evaluate the validity of the TLICS and finite element analysis of the thoracolumbar spinal column. Results were classified according to the main conclusions and level of evidence. Thirteen articles are included. Four of the articles evaluated the TLICS in comparison to other classification systems of thoracolumbar spinal injuries. A notable finding is that the TLICS had inconsistencies with other classification systems in the treatment of burst fractures without neurological deficits. One article evaluated the TLICS with the inclusion of magnetic resonance imaging (MRI) in the evaluation, which decreased the agreement between the suggested and actual treatment. Among the three finite element analysis studies, limited data have been published on the posterior ligamentous complex (PLC) status when an injury is suspected or indeterminate. The TLICS has been a reliable classification system in the management of single-column fractures and three-column injuries treated with surgical stabilization. Special attention to enhancing the TLICS classification system by eliminating the "gray zone" of a TLICS score of 4 is essential. Biomedical computational modeling evaluating the PLC status of indeterminate or injury suspected is needed to enhance the current TLICS system and to clarify the decision discrepancy in the "gray zone."

3.
Waste Manag ; 81: 53-60, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30527043

RESUMO

Large quantities of scrap tires have been generated and accumulated over the years. However, a significant amount of them are stocked due to the lack of environmentally-friendly methods for disposing of, or reusing them. Because tires contain approximately 1-2% zinc by weight, leaching of zinc from scrap tires could be an environmental concern. In this research, we investigated the leaching of zinc from tire particles that are used with asphalt for pavement applications. The effects of tire particle size and pH on zinc leaching were also examined. Our results indicated that asphalt treatment significantly reduced zinc leaching from tires, and that it was also reduced by increasing the tire particle size and pH. The leaching of zinc was quantified by using a speciation-based modeling approach. The model parameters, namely, the total leachable zinc mass and the adsorption constant, can be used to predict the leaching of zinc under different conditions. The reduction in zinc leaching from asphalt-treated tire particles was due to the physical blocking of the tire surface by the asphalt. Results also indicated that, while the leaching of zinc and other selected toxic elements from untreated tire particles using simulated acid rain was not significant compared to the drinking water regulations, asphalt treatment during the pavement application further improved the environmental performance of the tire particles.


Assuntos
Borracha/química , Poluentes Químicos da Água/química , Zinco/química , Concentração de Íons de Hidrogênio , Gerenciamento de Resíduos
4.
Polymers (Basel) ; 8(12)2016 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30974709

RESUMO

This paper presents the difference in behavior between hollow-core fiber reinforced polymer-concrete-steel (HC-FCS) columns and conventional reinforced concrete (RC) columns under vehicle collision in terms of dynamic and static forces. The HC-FCS column consisted of an outer FRP tube, an inner steel tube, and a concrete shell sandwiched between the two tubes. The steel tube was hollow inside and embedded into the concrete footing with a length of 1.5 times the tube diameter while the FRP tube stopped at the top of footing. The RC column had a solid cross-section. The study was conducted through extensive finite element impact analyses using LS-DYNA software. Nine parameters were studied including the concrete material model, unconfined concrete compressive strength, material strain rate, column height-to-diameter ratio, column diameter, column top boundary condition, axial load level, vehicle velocity, and vehicle mass. Generally, the HC-FCS columns had lower dynamic forces and higher static forces than the RC columns when changing the values of the different parameters. During vehicle collision with either the RC or the HC-FCS columns, the imposed dynamic forces and their equivalent static forces were affected mainly by the vehicle velocity and vehicle mass.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...