Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Histol ; 52(4): 781-798, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34046766

RESUMO

Vigabatrin is the drug of choice in resistant epilepsy and infantile spasms. Ataxia, tremors, and abnormal gait have been frequently reported following its use indicating cerebellar involvement. This study aimed, for the first time, to investigate the involvement of necroptosis and apoptosis in the VG-induced cerebellar cell loss and the possible protective role of combined omega-3 and vitamin B12 supplementation. Fifty Sprague-Dawley adult male rats (160-200 g) were divided into equal five groups: the control group received normal saline, VG200 and VG400 groups received VG (200 mg or 400 mg/kg, respectively), VG200 + OB and VG400 + OB groups received combined VG (200 mg or 400 mg/kg, respectively), vitamin B12 (1 mg/kg), and omega-3 (1 g/kg). All medications were given daily by gavage for four weeks. Histopathological changes were examined in H&E and luxol fast blue (LFB) stained sections. Immunohistochemical staining for caspase-3 and receptor-interacting serine/threonine-protein kinase-1 (RIPK1) as well as quantitative real-time polymerase chain reaction (qRT-PCR) for myelin basic protein (MBP), caspase-3, and receptor-interacting serine/threonine-protein kinase-3 (RIPK3) genes were performed. VG caused a decrease in the granular layer thickness and Purkinje cell number, vacuolations, demyelination, suppression of MBP gene expression, and induction of caspases-3, RIPK1, and RIPK3 in a dose-related manner. Combined supplementation with B12 and omega-3 improved the cerebellar histology, increased MBP, and decreased apoptotic and necroptotic markers. In conclusion, VG-induced neuronal cell loss is dose-dependent and related to both apoptosis and necroptosis. This could either be ameliorated (in low-dose VG) or reduced (in high-dose VG) by combined supplementation with B12 and omega-3.


Assuntos
Anticonvulsivantes/efeitos adversos , Caspase 3/metabolismo , Doenças Cerebelares/induzido quimicamente , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Vigabatrina/efeitos adversos , Animais , Apoptose , Caspase 3/genética , Doenças Cerebelares/tratamento farmacológico , Doenças Cerebelares/metabolismo , Doenças Cerebelares/patologia , Relação Dose-Resposta a Droga , Ácidos Graxos Ômega-3/administração & dosagem , Regulação da Expressão Gênica/fisiologia , Masculino , Proteína Básica da Mielina/genética , Necroptose , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Vitamina B 12/administração & dosagem
2.
Life Sci ; 274: 119344, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33716062

RESUMO

AIMS: Amiodarone (AM) is a highly efficient drug for arrhythmias treatment, but its extra-cardiac adverse effects offset its therapeutic efficacy. Nanoparticles (NPs)-based delivery system could provide a strategy to allow sustained delivery of AM to the myocardium and reduction of adverse effects. The primary purpose was to develop AM-loaded NPs and explore their ameliorative effects versus off-target toxicities. MATERIALS AND METHODS: Polymeric NPs were prepared using poly lactic-co-glycolic acid and their physicochemical properties were characterized. Animal studies were conducted using a rat model to compare exposure to AM versus that of the AM-loaded NPs. Biochemical evaluation of liver enzymes, lipid profile, and thyroid hormones was achieved. Besides, histopathological changes in liver and lung were studied. KEY FINDINGS: Under optimal experimental conditions, the AM-loaded NPs had a size of 186.90 nm and a negative zeta potential (-14.67 mV). Biochemical evaluation of AM-treated animal group showed a significant increase in cholesterol, TG, LDL, T4, and TSH levels (ρ < 0.05). Remarkably, the AM-treated group exhibited a significant increase of liver enzymes (ρ < 0.05) coupled with an obvious change in liver architecture. The AM-loaded NPs displayed a reduction of liver damage and enzyme levels. Lung sections of the AM-treated group demonstrated thickening of interalveolar septa, mononuclear cellular infiltration with congested blood vessels, and heavy collagenous fibers deposition. Conversely, less cellular infiltration and septal thickening were observed in the animal lungs treated with the AM-loaded NPs-treated. SIGNIFICANCE: Our findings demonstrate the competence of the AM-loaded NPs to open several exciting avenues for evading the AM-induced off-target toxicities.


Assuntos
Amiodarona/química , Amiodarona/farmacologia , Portadores de Fármacos/química , Fígado/patologia , Nanopartículas/toxicidade , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Amiodarona/administração & dosagem , Animais , Antiarrítmicos/administração & dosagem , Antiarrítmicos/química , Antiarrítmicos/farmacologia , Fígado/efeitos dos fármacos , Masculino , Nanopartículas/administração & dosagem , Estudos Prospectivos , Ratos , Ratos Sprague-Dawley , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...