Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 330: 124971, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33740584

RESUMO

This study investigates the suitability of continuous hybrid fixed bed anaerobic filter reactor for treating sewage and agro-industrial digestate hydrothermal carbonization (HTC) products; hydrochar and HTC liquor (HTCL). The reactor was operated for 300 days under mesophilic conditions at different organic loading rates (OLR); maximum OLRs of 7.4 and 10 gCOD/L/d were reached while treating HTC liquor and slurry, respectively. 15 g/L hydrochar were added to the reactor as a supplement while treating HTCL solely thus increasing the biogas production up to 153%. The reactor was fed with HTCL and hydrochar with an increasing mixing ratio, and the co-digestion impact was dependent on hydrochar concentrations. The results of the study indicate that the hybrid fixed bed anaerobic filter reactor is a promising anaerobic digestion configuration for treating HTCL and overcoming the HTC upscaling challenges, and the suitability of digestate hydrochar utilization as supplement material for anaerobic digestion.


Assuntos
Biocombustíveis , Esgotos , Anaerobiose , Suplementos Nutricionais
2.
J Environ Manage ; 281: 111910, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33401118

RESUMO

Hydrothermal carbonization (HTC) technology is addressed in the framework of sewage digestate management. HTC converts digestate into a stabilized and sterilized solid (the hydrochar) and a liquor (HTCL) rich in organic carbon. This study aims to optimize the HTC operating parameters, namely the treatment time, in terms of hydrochar production, HTC slurry dewaterability, HTCL bio-methane yields in anaerobic digestion (AD), and process energy consumption. Digestate slurry was processed through HTC at different treatment times (0.5, 1, 2 and 3 h) at 190 °C, and the dewaterability of the treated slurries was addressed through capillary suction time and centrifuge lab-testing. In addition, biochemical methane potential (BMP) tests were conducted for HTCL under mesophilic conditions. Results show that by increasing the HTC treatment time the dewaterability was further improved, ammonium concentration in HTCL increased, and methane potential of HTCL decreased. 0.5 h HTCL had the highest bio-methane potential of 142 ± 3 mL CH4/g COD yet the treatment time was not sufficient for improving the slurry's dewaterability. HTC treatment time of 1 h at 190 °C was identified as the optimum trade-off for improved dewaterability and utilisation of HTCL for biogas production. 1 h HTCL bio-methane potential can cover around 25% of the HTC and AD thermal and electrical energy needs without considering the eventual use of the hydrochar as a biofuel.


Assuntos
Metano , Esgotos , Anaerobiose , Biocombustíveis , Carbono
3.
Water Sci Technol ; 70(6): 1011-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25259489

RESUMO

Ion exchange, reverse osmosis, and chemical precipitation have been investigated extensively for heavy metal uptake. However, they are deemed too expensive to meet stringent effluent characteristics. In this study, cement kiln dust (CKD) was examined for the removal of target heavy metals. Adsorption studies in completely mixed batch reactors were used to generate equilibrium pH adsorption edges. Studies showed the ability of CKD to remove the target heavy metals in a pH range below that of precipitation after an equilibrium reaction time of 24 h. A surface titration experiment indicated negative surface charge of the CKD at pH below 10, meaning that electrostatic attraction of the divalent metals can occur below the pH required for precipitation. However, surface complexation was also important due to the substantive metal removal. Accordingly, a surface complexation model approach that utilizes an electrostatic term in the double-layer description was used to estimate equilibrium constants for the protolysis interactions of the CKD surface as well as equilibria between background ions and the sorbent surface. It was concluded that the removal strength of adsorption is in the order: Pb > Cu > Cd. The experiments were also supported by Fourier transform infrared spectroscopy (FTIR).


Assuntos
Materiais de Construção/análise , Poeira/análise , Resíduos Industriais/análise , Metais Pesados/química , Adsorção , Cátions , Troca Iônica , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água
4.
Waste Manag ; 28(11): 2366-74, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18191560

RESUMO

Prediction of landfill settlement is one of the important parameters that affects the design and maintenance of bioreactor landfills. Due to the large number of variables involved in the settlement mechanism, accurate prediction of landfill settlement is a real challenge. The operational protocol of a landfill, the presence of municipal sludge from treatment plants, the addition of soybean peroxidase (SBP) enzymes, and the fraction of organic matter in the municipal solid waste (MSW) have to be reflected in the parameters of any model used to predict the settlement of MSW. In this work, a biodegradation-induced settlement model incorporating two parameters (A and B) was developed. The settlement data of two researchers were used to estimate the parameter values with two different approaches; the first considered the overall experiment and results, and the second separated the aerobic phase, if present, from the anaerobic phase. The rate of initial settlement occurring under aerobic conditions has been greater than that under anaerobic conditions. Parameters increased with the increase in the concentration of enzymes and with the presence of sludge in both aerobic and anaerobic stages. Increasing organic content of MSW has resulted in the enhancement of the biodegradation rate and settlement. This has been reflected on the higher values of the parameters compared to their values in the absence of organic waste.


Assuntos
Reatores Biológicos , Gerenciamento de Resíduos/métodos , Biodegradação Ambiental , Força Compressiva , Egito , Cinética , Modelos Teóricos , Peroxidases/metabolismo , Glycine max/enzimologia , Fatores de Tempo , Gerenciamento de Resíduos/instrumentação , Poluentes Químicos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...