Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 13155, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573435

RESUMO

Optical diffractometry (OD) using a phase step is an alternative for interferometry, further, has least sensitivity to environmental vibrations. Therefore, OD has found numerous interesting metrological and technological applications. OD utilizes a phase step to detect the influence of objects under measurement by the changes in the Fresnel diffraction pattern. Recently, we showed that such measurements do not require infinitively sharp phase steps, although fabrication of such sharp elements is also impossible. Here, we address the issue of smoothness of the phase step surfaces. So far, in all of the OD applications the surfaces of the incorporated phase steps are considered to be optically smooth and flat. However, practically, some amount of roughness and unflatness is unavoidable even in precise and careful fabrication process. We show that preserving the OD-diffraction-pattern characteristics of a phase step depends on the level of roughness in the surfaces of the phase step. We define number of detectable fringes and autocorrelation functions of the diffraction patterns as the measures for evaluating the similarity of the rough phase step diffractions to the ideal case. We derive the theoretical description and confirm the results with simulations and experiments.

2.
Nat Commun ; 10(1): 2683, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31213600

RESUMO

Standard optical tweezers rely on optical forces arising when a focused laser beam interacts with a microscopic particle: scattering forces, pushing the particle along the beam direction, and gradient forces, attracting it towards the high-intensity focal spot. Importantly, the incoming laser beam is not affected by the particle position because the particle is outside the laser cavity. Here, we demonstrate that intracavity nonlinear feedback forces emerge when the particle is placed inside the optical cavity, resulting in orders-of-magnitude higher confinement along the three axes per unit laser intensity on the sample. This scheme allows trapping at very low numerical apertures and reduces the laser intensity to which the particle is exposed by two orders of magnitude compared to a standard 3D optical tweezers. These results are highly relevant for many applications requiring manipulation of samples that are subject to photodamage, such as in biophysics and nanosciences.

3.
Nat Photonics ; 13(4): 251-256, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30930957

RESUMO

Holography is the most promising route to true-to-life 3D projections, but the incorporation of complex images with full depth control remains elusive. Digitally synthesised holograms1-7, which do not require real objects to create a hologram, offer the possibility of dynamic projection of 3D video8,9. Extensive efforts aimed 3D holographic projection10-17, however available methods remain limited to creating images on a few planes10-12, over a narrow depth-of-field13,14 or with low resolution15-17. Truly 3D holography also requires full depth control and dynamic projection capabilities, which are hampered by high crosstalk9,18. The fundamental difficulty is in storing all the information necessary to depict a complex 3D image in the 2D form of a hologram without letting projections at different depths contaminate each other. Here, we solve this problem by preshaping the wavefronts to locally reduce Fresnel diffraction to Fourier holography, which allows inclusion of random phase for each depth without altering image projection at that particular depth, but eliminates crosstalk due to near-orthogonality of large-dimensional random vectors. We demonstrate Fresnel holograms that form on-axis with full depth control without any crosstalk, producing large-volume, high-density, dynamic 3D projections with 1000 image planes simultaneously, improving the state-of-the-art12,17 for number of simultaneously created planes by two orders of magnitude. While our proof-of-principle experiments use spatial light modulators, our solution is applicable to all types of holographic media.

4.
Opt Lett ; 43(3): 535-538, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29400834

RESUMO

We report on a 72 W Yb all-fiber ultrafast laser system with 1.6 GHz intra-burst and 200 kHz burst repetition rate developed to demonstrate ablation-cooled material removal at high speeds. Up to 24 W is applied on Cu and Si samples with pulses of ∼300 fs, and record-high ablation efficiencies are obtained, compared to published results to date, despite using only ∼100 nJ pulses. Ablation speeds approaching 1 mm3/s are reported with 24 W of average power, limited by available laser power and beam scanning speed. More significantly, these results experimentally confirm the theoretically expected linear scaling of the ablation-cooled regime to higher average powers without sacrificing efficiency, which implies that further scaling is possible with further increases in laser power and scanning speeds.

5.
Nat Photonics ; 11(10): 639-645, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28983323

RESUMO

Silicon is an excellent material for microelectronics and integrated photonics1-3 with untapped potential for mid-IR optics4. Despite broad recognition of the importance of the third dimension5,6, current lithography methods do not allow fabrication of photonic devices and functional microelements directly inside silicon chips. Even relatively simple curved geometries cannot be realised with techniques like reactive ion etching. Embedded optical elements, like in glass7, electronic devices, and better electronic-photonic integration are lacking8. Here, we demonstrate laser-based fabrication of complex 3D structures deep inside silicon using 1 µm-sized dots and rod-like structures of adjustable length as basic building blocks. The laser-modified Si has a different optical index than unmodified parts, which enables numerous photonic devices. Optionally, these parts are chemically etched to produce desired 3D shapes. We exemplify a plethora of subsurface, i.e., "in-chip" microstructures for microfluidic cooling of chips, vias, MEMS, photovoltaic applications and photonic devices that match or surpass the corresponding state-of-the-art device performances.

6.
Opt Lett ; 42(19): 3808-3811, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957134

RESUMO

We report on the development of, to the best of our knowledge, the first ultrafast burst-mode laser system operating at a central wavelength of approximately 2 µm, where water absorption and, consequently, the absorption of most biological tissue is very high. The laser comprises a harmonically mode-locked 1-GHz oscillator, which, in turn, seeds a fiber amplifier chain. The amplifier produces 500 ns long bursts containing 500 pulses with 1 GHz intra-burst and 50 kHz inter-burst repetition rates, respectively, at an average power of 1 W, corresponding to 40 nJ pulse and 20 µJ burst energies, respectively. The entire system is built in an all-fiber architecture and implements dispersion management such that output pulses are delivered directly from a single-mode fiber with a duration of 340 fs without requiring any external compression. This gigahertz-repetition-rate system is intended for ablation-cooled laser material removal in the 2 µm wavelength region, which is interesting for laser surgery due to the exceptionally high tissue absorption at this wavelength.

7.
Nature ; 537(7618): 84-88, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27409814

RESUMO

The use of femtosecond laser pulses allows precise and thermal-damage-free removal of material (ablation) with wide-ranging scientific, medical and industrial applications. However, its potential is limited by the low speeds at which material can be removed and the complexity of the associated laser technology. The complexity of the laser design arises from the need to overcome the high pulse energy threshold for efficient ablation. However, the use of more powerful lasers to increase the ablation rate results in unwanted effects such as shielding, saturation and collateral damage from heat accumulation at higher laser powers. Here we circumvent this limitation by exploiting ablation cooling, in analogy to a technique routinely used in aerospace engineering. We apply ultrafast successions (bursts) of laser pulses to ablate the target material before the residual heat deposited by previous pulses diffuses away from the processing region. Proof-of-principle experiments on various substrates demonstrate that extremely high repetition rates, which make ablation cooling possible, reduce the laser pulse energies needed for ablation and increase the efficiency of the removal process by an order of magnitude over previously used laser parameters. We also demonstrate the removal of brain tissue at two cubic millimetres per minute and dentine at three cubic millimetres per minute without any thermal damage to the bulk.


Assuntos
Temperatura Baixa , Temperatura Alta , Terapia a Laser/efeitos adversos , Terapia a Laser/métodos , Lasers/efeitos adversos , Animais , Encéfalo/cirurgia , Bovinos , Córnea/cirurgia , Dentina/cirurgia , Humanos , Terapia a Laser/instrumentação , Ratos , Fatores de Tempo
8.
Nat Commun ; 7: 10907, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26956085

RESUMO

Living active matter systems such as bacterial colonies, schools of fish and human crowds, display a wealth of emerging collective and dynamic behaviours as a result of far-from-equilibrium interactions. The dynamics of these systems are better understood and controlled considering their interaction with the environment, which for realistic systems is often highly heterogeneous and disordered. Here, we demonstrate that the presence of spatial disorder can alter the long-term dynamics in a colloidal active matter system, making it switch between gathering and dispersal of individuals. At equilibrium, colloidal particles always gather at the bottom of any attractive potential; however, under non-equilibrium driving forces in a bacterial bath, the colloids disperse if disorder is added to the potential. The depth of the local roughness in the environment regulates the transition between gathering and dispersal of individuals in the active matter system, thus inspiring novel routes for controlling emerging behaviours far from equilibrium.


Assuntos
Escherichia coli/química , Escherichia coli/crescimento & desenvolvimento , Coloides/química , Ecossistema , Modelos Biológicos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...