Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(8)2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37109813

RESUMO

Date palm fiber (DPF) has been reported to have many advantages when used in concrete, however, its major disadvantage is that it causes a reduction in compressive strength. In this research, powdered activated carbon (PAC) was added to cement in the DPF-reinforced concrete (DPFRC) to lessen the loss in strength. PAC has not been properly utilized as an additive in fiber reinforced concrete even though it has been reported to enhance the properties of cementitious composites. Response surface methodology (RSM) has also been utilized for experimental design, model development, results analysis, and optimization. The variables were DPF and PAC as additions each at proportions of 0%, 1%, 2%, and 3% by weight of cement. Slump, fresh density, mechanical strengths, and water absorption were the responses that were considered. From the results, both DPF and PAC decreased the workability of the concrete. DPF addition improved the splitting tensile and flexural strengths and reduced the compressive strength, and up to 2 wt% PAC addition enhanced the concrete's strength and lowered the water absorption. The proposed models using RSM were extremely significant and have excellent predictive power for the concrete's aforementioned properties. Each of the models was further validated experimentally and was found to have an average error of less than 5.5%. According to the results of the optimization, the optimal mix of 0.93 wt% DPF and 0.37 wt% PAC as cement additives resulted in the best properties of the DPFRC in terms of workability, strength, and water absorption. The optimization's outcome received a 91% desirability rating. The addition of 1% PAC increased the 28-day compressive strength of the DPFRC containing 0%, 1% and 2% DPF by 9.67%, 11.13% and 5.5% respectively. Similarly, 1% PAC addition enhanced the 28-day split tensile strength of the DPFRC containing 0%, 1% and 2% by 8.54%, 11.08% and 19.3% respectively. Likewise, the 28-day flexural strength of DPFRC containing 0%, 1%, 2% and 3% improved by 8.3%, 11.15%, 18.7% and 6.73% respectively with the addition of 1% PAC. Lastly, 1% PAC addition led to a reduction in the water absorption of DPFRC containing 0% and 1% DPF by 17.93% and 12.2% respectively.

2.
Polymers (Basel) ; 15(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36904319

RESUMO

Recently, polymer concrete (PC) has been widely used in many civil engineering applications. PC shows superiority in major physical, mechanical, and fracture properties comparing to ordinary Portland cement concrete. Despite many suitable characteristics of thermosetting resins related to processing, the thermal resistance of polymer concrete composite is relatively low. This study aims to investigate the effect of incorporating short fibers on mechanical and fracture properties of PC under different ranges of high temperatures. Short carbon and polypropylene fibers were added randomly at a rate of 1 and 2% by the total weight of the PC composite. The exposure temperatures cycles were ranged between 23 to 250 °C. Various tests were conducted including flexure strength, elastic modulus, toughness, tensile crack opening, density, and porosity to evaluate the effect of addition of short fibers on fracture properties of PC. The results show that the inclusion of short fiber lead to an increase in the load carrying capacity of PC by an average of 24% and limits the crack propagation. On the other hand, the enhancement of fracture properties of based PC containing short fibers is vanished at high temperature (250 °C), but still more efficient than ordinary cement concrete. This work could lead to broader applications of polymer concrete exposed to high temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...