Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38201608

RESUMO

Laryngeal cancer (LCA) is a serious disease with a concerning global rise in incidence. Accurate treatment for LCA is particularly challenging in later stages, due to its complex nature as a head and neck malignancy. To address this challenge, researchers have been actively developing various analysis methods and tools to assist medical professionals in efficient LCA identification. However, existing tools and methods often suffer from various limitations, including low accuracy in early-stage LCA detection, high computational complexity, and lengthy patient screening times. With this motivation, this study presents an Automated Laryngeal Cancer Detection and Classification using a Dwarf Mongoose Optimization Algorithm with Deep Learning (ALCAD-DMODL) technique. The main objective of the ALCAD-DMODL method is to recognize the existence of LCA using the DL model. In the presented ALCAD-DMODL technique, a median filtering (MF)-based noise removal process takes place to get rid of the noise. Additionally, the ALCAD-DMODL technique involves the EfficientNet-B0 model for deriving feature vectors from the pre-processed images. For optimal hyperparameter tuning of the EfficientNet-B0 model, the DMO algorithm can be applied to select the parameters. Finally, the multi-head bidirectional gated recurrent unit (MBGRU) model is applied for the recognition and classification of LCA. The simulation result analysis of the ALCAD-DMODL technique is carried out on the throat region image dataset. The comparison study stated the supremacy of the ALCAD-DMODL technique in terms of distinct measures.

2.
Comput Intell Neurosci ; 2022: 7643967, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814555

RESUMO

Oral cancer is one of the lethal diseases among the available malignant tumors globally, and it has become a challenging health issue in developing and low-to-middle income countries. The prognosis of oral cancer remains poor because over 50% of patients are recognized at advanced stages. Earlier detection and screening models for oral cancer are mainly based on experts' knowledge, and it necessitates an automated tool for oral cancer detection. The recent developments of computational intelligence (CI) and computer vision-based approaches help to accomplish enhanced performance in medical-image-related tasks. This article develops an intelligent deep learning enabled oral squamous cell carcinoma detection and classification (IDL-OSCDC) technique using biomedical images. The presented IDL-OSCDC model involves the recognition and classification of oral cancer on biomedical images. The proposed IDL-OSCDC model employs Gabor filtering (GF) as a preprocessing step to eliminate noise content. In addition, the NasNet model is exploited for the generation of high-level deep features from the input images. Moreover, an enhanced grasshopper optimization algorithm (EGOA)-based deep belief network (DBN) model is employed for oral cancer detection and classification. The hyperparameter tuning of the DBN model is performed using the EGOA algorithm which in turn boosts the classification outcomes. The experimentation outcomes of the IDL-OSCDC model using a benchmark biomedical imaging dataset highlighted its promising performance over the other methods with maximum accu y , prec n , reca l , and F score of 95%, 96.15%, 93.75%, and 94.67% correspondingly.


Assuntos
Carcinoma de Células Escamosas , Aprendizado Profundo , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Carcinoma de Células Escamosas/diagnóstico por imagem , Humanos , Neoplasias Bucais/diagnóstico por imagem , Carcinoma de Células Escamosas de Cabeça e Pescoço
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...