Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comput Biol ; 31(5): 458-471, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38752890

RESUMO

Medulloblastoma (MB) is a molecularly heterogeneous brain malignancy with large differences in clinical presentation. According to genomic studies, there are at least four distinct molecular subgroups of MB: sonic hedgehog (SHH), wingless/INT (WNT), Group 3, and Group 4. The treatment and outcomes depend on appropriate classification. It is difficult for the classification algorithms to identify these subgroups from an imbalanced MB genomic data set, where the distribution of samples among the MB subgroups may not be equal. To overcome this problem, we used singular value decomposition (SVD) and group lasso techniques to find DNA methylation probe features that maximize the separation between the different imbalanced MB subgroups. We used multinomial regression as a classification method to classify the four different molecular subgroups of MB using the reduced DNA methylation data. Coordinate descent is used to solve our loss function associated with the group lasso, which promotes sparsity. By using SVD, we were able to reduce the 321,174 probe features to just 200 features. Less than 40 features were successfully selected after applying the group lasso, which we then used as predictors for our classification models. Our proposed method achieved an average overall accuracy of 99% based on fivefold cross-validation technique. Our approach produces improved classification performance compared with the state-of-the-art methods for classifying MB molecular subgroups.


Assuntos
Algoritmos , Metilação de DNA , Meduloblastoma , Meduloblastoma/genética , Meduloblastoma/classificação , Humanos , Metilação de DNA/genética , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/classificação , Biologia Computacional/métodos
2.
Sci Rep ; 13(1): 21671, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38066059

RESUMO

Lung cancer, a life-threatening disease primarily affecting lung tissue, remains a significant contributor to mortality in both developed and developing nations. Accurate biomarker identification is imperative for effective cancer diagnosis and therapeutic strategies. This study introduces the Voting-Based Enhanced Binary Ebola Optimization Search Algorithm (VBEOSA), an innovative ensemble-based approach combining binary optimization and the Ebola optimization search algorithm. VBEOSA harnesses the collective power of the state-of-the-art classification models through soft voting. Moreover, our research applies VBEOSA to an extensive lung cancer gene expression dataset obtained from TCGA, following essential preprocessing steps including outlier detection and removal, data normalization, and filtration. VBEOSA aids in feature selection, leading to the discovery of key hub genes closely associated with lung cancer, validated through comprehensive protein-protein interaction analysis. Notably, our investigation reveals ten significant hub genes-ADRB2, ACTB, ARRB2, GNGT2, ADRB1, ACTG1, ACACA, ATP5A1, ADCY9, and ADRA1B-each demonstrating substantial involvement in the domain of lung cancer. Furthermore, our pathway analysis sheds light on the prominence of strategic pathways such as salivary secretion and the calcium signaling pathway, providing invaluable insights into the intricate molecular mechanisms underpinning lung cancer. We also utilize the weighted gene co-expression network analysis (WGCNA) method to identify gene modules exhibiting strong correlations with clinical attributes associated with lung cancer. Our findings underscore the efficacy of VBEOSA in feature selection and offer profound insights into the multifaceted molecular landscape of lung cancer. Finally, we are confident that this research has the potential to improve diagnostic capabilities and further enrich our understanding of the disease, thus setting the stage for future advancements in the clinical management of lung cancer. The VBEOSA source codes is publicly available at https://github.com/TEHNAN/VBEOSA-A-Novel-Feature-Selection-Algorithm-for-Identifying-hub-Genes-in-Lung-Cancer .


Assuntos
Doença pelo Vírus Ebola , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Algoritmos , Software , Sinalização do Cálcio , Redes Reguladoras de Genes
3.
PLoS One ; 17(10): e0275195, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36201724

RESUMO

Plasmodium falciparum is a parasitic protozoan that can cause malaria, which is a deadly disease. Therefore, the accurate identification of malaria parasite mitochondrial proteins is essential for understanding their functions and identifying novel drug targets. For classifying protein sequences, several adaptive statistical techniques have been devised. Despite significant gains, prediction performance is still constrained by the lack of appropriate feature descriptors and learning strategies in current systems. Moreover, good ground truth data is important for Artificial Intelligence (AI)-based models but there is a lack of that data in the literature. Therefore, in this work, we propose a novel hybrid network that combines 1D Convolutional Neural Network (CNN) and Bidirectional Gated Recurrent Unit (BGRU) to classify the malaria parasite mitochondrial proteins. Furthermore, we curate a sequential data that are collected from National Center for Biotechnology Information (NCBI) and UniProtKB/Swiss-Prot proteins databanks to prepare a dataset that can be used by the research community for AI-based algorithms evaluation. We obtain 4204 cases after preprocessing of the collected data and denote this set of proteins as PF4204. Finally, we conduct an ablation study on several conventional and deep models using PF4204 and the benchmark PF2095 datasets. The proposed model 'CNN-BGRU' obtains the accuracy values of 0.9096 and 0.9857 on PF4204 and PF2095 datasets, respectively. In addition, the CNN-BGRU is compared with state-of-the-arts, where the results illustrate that it can extract robust features and identify proteins accurately.


Assuntos
Aprendizado Profundo , Malária , Parasitos , Algoritmos , Animais , Inteligência Artificial , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Parasitos/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo
4.
PLoS One ; 16(12): e0261625, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34965262

RESUMO

Understanding and identifying the markers and clinical information that are associated with colorectal cancer (CRC) patient survival is needed for early detection and diagnosis. In this work, we aimed to build a simple model using Cox proportional hazards (PH) and random survival forest (RSF) and find a robust signature for predicting CRC overall survival. We used stepwise regression to develop Cox PH model to analyse 54 common differentially expressed genes from three mutations. RSF is applied using log-rank and log-rank-score based on 5000 survival trees, and therefore, variables important obtained to find the genes that are most influential for CRC survival. We compared the predictive performance of the Cox PH model and RSF for early CRC detection and diagnosis. The results indicate that SLC9A8, IER5, ARSJ, ANKRD27, and PIPOX genes were significantly associated with the CRC overall survival. In addition, age, sex, and stages are also affecting the CRC overall survival. The RSF model using log-rank is better than log-rank-score, while log-rank-score needed more trees to stabilize. Overall, the imputation of missing values enhanced the model's predictive performance. In addition, Cox PH predictive performance was better than RSF.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , Idoso , Neoplasias Colorretais/genética , Neoplasias Colorretais/mortalidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Análise de Sobrevida
5.
Sci Rep ; 11(1): 15626, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34341396

RESUMO

Cancer tumor classification based on morphological characteristics alone has been shown to have serious limitations. Breast, lung, colorectal, thyroid, and ovarian are the most commonly diagnosed cancers among women. Precise classification of cancers into their types is considered a vital problem for cancer diagnosis and therapy. In this paper, we proposed a stacking ensemble deep learning model based on one-dimensional convolutional neural network (1D-CNN) to perform a multi-class classification on the five common cancers among women based on RNASeq data. The RNASeq gene expression data was downloaded from Pan-Cancer Atlas using GDCquery function of the TCGAbiolinks package in the R software. We used least absolute shrinkage and selection operator (LASSO) as feature selection method. We compared the results of the new proposed model with and without LASSO with the results of the single 1D-CNN and machine learning methods which include support vector machines with radial basis function, linear, and polynomial kernels; artificial neural networks; k-nearest neighbors; bagging trees. The results show that the proposed model with and without LASSO has a better performance compared to other classifiers. Also, the results show that the machine learning methods (SVM-R, SVM-L, SVM-P, ANN, KNN, and bagging trees) with under-sampling have better performance than with over-sampling techniques. This is supported by the statistical significance test of accuracy where the p-values for differences between the SVM-R and SVM-P, SVM-R and ANN, SVM-R and KNN are found to be p = 0.003, p = < 0.001, and p = < 0.001, respectively. Also, SVM-L had a significant difference compared to ANN p = 0.009. Moreover, SVM-P and ANN, SVM-P and KNN are found to be significantly different with p-values p = < 0.001 and p = < 0.001, respectively. In addition, ANN and bagging trees, ANN and KNN were found to be significantly different with p-values p = < 0.001 and p = 0.004, respectively. Thus, the proposed model can help in the early detection and diagnosis of cancer in women, and hence aid in designing early treatment strategies to improve survival.


Assuntos
Aprendizado Profundo , Neoplasias , Feminino , Humanos , Reconhecimento Automatizado de Padrão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...