Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 24(8)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-36010697

RESUMO

In this article, a new one parameter survival model is proposed using the Kavya-Manoharan (KM) transformation family and the inverse length biased exponential (ILBE) distribution. Statistical properties are obtained: quantiles, moments, incomplete moments and moment generating function. Different types of entropies such as Rényi entropy, Tsallis entropy, Havrda and Charvat entropy and Arimoto entropy are computed. Different measures of extropy such as extropy, cumulative residual extropy and the negative cumulative residual extropy are computed. When the lifetime of the item under use is assumed to follow the Kavya-Manoharan inverse length biased exponential (KMILBE) distribution, the progressive-stress accelerated life tests are considered. Some estimating approaches, such as the maximum likelihood, maximum product of spacing, least squares, and weighted least square estimations, are taken into account while using progressive type-II censoring. Furthermore, interval estimation is accomplished by determining the parameters' approximate confidence intervals. The performance of the estimation approaches is investigated using Monte Carlo simulation. The relevance and flexibility of the model are demonstrated using two real datasets. The distribution is very flexible, and it outperforms many known distributions such as the inverse length biased, the inverse Lindley model, the Lindley, the inverse exponential, the sine inverse exponential and the sine inverse Rayleigh model.

2.
Comput Math Methods Med ; 2022: 2066787, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844450

RESUMO

Since December 2019, the COVID-19 outbreak has touched every area of everyday life and caused immense destruction to the planet. More than 150 nations have been affected by the coronavirus outbreak. Many academics have attempted to create a statistical model that may be used to interpret the COVID-19 data. This article extends to probability theory by developing a unique two-parameter statistical distribution called the half-logistic inverse moment exponential (HLIMExp). Advanced mathematical characterizations of the suggested distribution have explicit formulations. The maximum likelihood estimation approach is used to provide estimates for unknown model parameters. A complete simulation study is carried out to evaluate the performance of these estimations. Three separate sets of COVID-19 data from Al Bahah, Al Madinah Al Munawarah, and Riyadh are utilized to test the HLIMExp model's applicability. The HLIMExp model is compared to several other well-known distributions. Using several analytical criteria, the results show that the HLIMExp distribution produces promising outcomes in terms of flexibility.


Assuntos
COVID-19 , COVID-19/epidemiologia , Surtos de Doenças , Humanos , Modelos Estatísticos , Arábia Saudita/epidemiologia
3.
Entropy (Basel) ; 23(8)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34441228

RESUMO

In this article, the "truncated-composed" scheme was applied to the Burr X distribution to motivate a new family of univariate continuous-type distributions, called the truncated Burr X generated family. It is mathematically simple and provides more modeling freedom for any parental distribution. Additional functionality is conferred on the probability density and hazard rate functions, improving their peak, asymmetry, tail, and flatness levels. These characteristics are represented analytically and graphically with three special distributions of the family derived from the exponential, Rayleigh, and Lindley distributions. Subsequently, we conducted asymptotic, first-order stochastic dominance, series expansion, Tsallis entropy, and moment studies. Useful risk measures were also investigated. The remainder of the study was devoted to the statistical use of the associated models. In particular, we developed an adapted maximum likelihood methodology aiming to efficiently estimate the model parameters. The special distribution extending the exponential distribution was applied as a statistical model to fit two sets of actuarial and financial data. It performed better than a wide variety of selected competing non-nested models. Numerical applications for risk measures are also given.

4.
PLoS One ; 16(3): e0249027, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33784310

RESUMO

The estimation of the entropy of a random system or process is of interest in many scientific applications. The aim of this article is the analysis of the entropy of the famous Kumaraswamy distribution, an aspect which has not been the subject of particular attention previously as surprising as it may seem. With this in mind, six different entropy measures are considered and expressed analytically via the beta function. A numerical study is performed to discuss the behavior of these measures. Subsequently, we investigate their estimation through a semi-parametric approach combining the obtained expressions and the maximum likelihood estimation approach. Maximum likelihood estimates for the considered entropy measures are thus derived. The convergence properties of these estimates are proved through a simulated data, showing their numerical efficiency. Concrete applications to two real data sets are provided.


Assuntos
Entropia , Estatística como Assunto , Simulação por Computador , Inundações , Sedimentos Geológicos/química , Funções Verossimilhança , Análise Numérica Assistida por Computador
5.
Entropy (Basel) ; 22(3)2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33286120

RESUMO

As a matter of fact, the statistical literature lacks of general family of distributions based on the truncated Cauchy distribution. In this paper, such a family is proposed, called the truncated Cauchy power-G family. It stands out for the originality of the involved functions, its overall simplicity and its desirable properties for modelling purposes. In particular, (i) only one parameter is added to the baseline distribution avoiding the over-parametrization phenomenon, (ii) the related probability functions (cumulative distribution, probability density, hazard rate, and quantile functions) have tractable expressions, and (iii) thanks to the combined action of the arctangent and power functions, the flexible properties of the baseline distribution (symmetry, skewness, kurtosis, etc.) can be really enhanced. These aspects are discussed in detail, with the support of comprehensive numerical and graphical results. Furthermore, important mathematical features of the new family are derived, such as the moments, skewness and kurtosis, two kinds of entropy and order statistics. For the applied side, new models can be created in view of fitting data sets with simple or complex structure. This last point is illustrated by the consideration of the Weibull distribution as baseline, the maximum likelihood method of estimation and two practical data sets wit different skewness properties. The obtained results show that the truncated Cauchy power-G family is very competitive in comparison to other well implanted general families.

6.
PLoS One ; 15(3): e0230004, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32196523

RESUMO

In this paper, we introduce the exponentiated power generalized Weibull power series (EPGWPS) family of distributions, obtained by compounding the exponentiated power generalized Weibull and power series distributions. By construction, the new family contains a myriad of new flexible lifetime distributions having strong physical interpretations (lifetime system, biological studies…). We discuss the characteristics and properties of the EPGWPS family, including its probability density and hazard rate functions, quantiles, moments, incomplete moments, skewness and kurtosis. The main vocation of the EPGWPS family remains to be applied in a statistical setting, and data analysis in particular. In this regard, we explore the estimation of the model parameters by the maximum likelihood method, with accuracy supported by a detailed simulation study. Then, we apply it to two practical data sets, showing the applicability and competitiveness of the EPGWPS models in comparison to some other well-reputed models.


Assuntos
Estatística como Assunto/métodos
7.
Springerplus ; 4: 2, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25995982

RESUMO

UNLABELLED: In this paper, we propose a five-parameter lifetime model called the McDonald exponentiated gamma distribution to extend beta exponentiated gamma, Kumaraswamy exponentiated gamma and exponentiated gamma, among several other models. We provide a comprehensive mathematical treatment of this distribution. We derive the moment generating function and the rth moment. We discuss estimation of the parameters by maximum likelihood and provide the information matrix. AMS SUBJECT CLASSIFICATION: Primary 62N05; secondary 90B25.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...