Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Antimicrob Chemother ; 79(7): 1473-1483, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38742645

RESUMO

Antimicrobial resistance is a pressing concern that poses a significant threat to global public health, necessitating the exploration of alternative strategies to combat drug-resistant microbial infections. Recently, antimicrobial peptides (AMPs) have gained substantial attention as possible replacements for conventional antibiotics. Because of their pharmacodynamics and killing mechanisms, AMPs display a lower risk of bacterial resistance evolution compared with most conventional antibiotics. However, bacteria display different mechanisms to resist AMPs, and the role of metabolic pathways in the resistance mechanism is not fully understood. This review examines the intricate relationship between metabolic genes and AMP resistance, focusing on the impact of metabolic pathways on various aspects of resistance. Metabolic pathways related to guanosine pentaphosphate (pppGpp) and guanosine tetraphosphate (ppGpp) [collectively (p)ppGpp], the tricarboxylic acid (TCA) cycle, haem biosynthesis, purine and pyrimidine biosynthesis, and amino acid and lipid metabolism influence in different ways metabolic adjustments, biofilm formation and energy production that could be involved in AMP resistance. By targeting metabolic pathways and their associated genes, it could be possible to enhance the efficacy of existing antimicrobial therapies and overcome the challenges exhibited by phenotypic (recalcitrance) and genetic resistance toward AMPs. Further research in this area is needed to provide valuable insights into specific mechanisms, uncover novel therapeutic targets, and aid in the fight against antimicrobial resistance.


Assuntos
Peptídeos Antimicrobianos , Bactérias , Farmacorresistência Bacteriana , Redes e Vias Metabólicas , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Bactérias/genética , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Humanos , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/genética , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos
2.
Foodborne Pathog Dis ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804146

RESUMO

Plasmid-mediated colistin resistance is an emerging One Health challenge at the human-food-environment interface. In this study, 12 colistin-resistant Escherichia coli carrying mcr-1.1 gene were characterized using whole-genome sequencing. This is the first report from locally produced chicken meat in the United Arab Emirates. The characterized isolates harbored virulence-associated factors ranging from 4 to 17 genes per isolate. The multilocus sequence type 1011 was identified in 5 (41.6%) isolates. Six (50.0%) of the isolates harbored blaCTX-M-55. All of the E. coli isolates contained Incl2 plasmids. This study highlights for the first time chicken meat as a potential reservoir of mcr-1.1 carrying E. coli in the UAE. This study has implications for food safety and underscores the need for comprehensive surveillance strategies to monitor the spread of colistin resistance. Results presented in this short communication address knowledge gaps on the epidemiology of plasmid-mediated colistin resistance in the Middle East food production chain.

3.
Microbiol Res ; 282: 127631, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38330818

RESUMO

Global emergence of multidrug-resistant (MDR) Salmonella enterica serovar Typhimurium is a continuing challenge for modern healthcare. However, the knowledge, regarding the epidemiology of salmonellosis caused by the monophasic variant S. 4,[5],12:i:- in hospitalized patients, is limited in China. To bridge this gap, we carried out a retrospective study to determine the antimicrobial resistance, trends, and risk factors of S. Typhimurium and S. 4,[5],12:i:- (n = 329) recovered from patients in Zhejiang province between 2011 and 2019. The results showed that 90.57% (298/329) of the isolates were MDR; among them, 48.94% (161/329) and 12.46% (41/329) were phenotypically resistant to cephalosporins and fluoroquinolones, respectively, which are the drugs of choice used to treat salmonellosis in clinics. Additionally, we observed a higher incidence of infections among the young population (<5 years old). Notably, the higher prevalence of ST34 (sequence type 34) isolates, especially after 2014, with MDR (57.05%, 170/298) phenotype, and incidence of ST34 isolates co-harbouring mcr-1 (mobile colistin resistance gene) and blaCTX-M-14 (ß-lactamase gene) suggest an association between STs and drug resistance. Together, the increasing prevalence of MDR ST34 calls for enhanced monitoring strategies to mitigate the spread and dissemination of MDR clones of S. Typhimurium and S. 4,[5],12:i-. Our study provides improved knowledge about non-typhoid Salmonella (NTS) infections, which could help in the effective recommendation of antimicrobials in hospitalized patients.


Assuntos
Intoxicação Alimentar por Salmonella , Infecções por Salmonella , Humanos , Pré-Escolar , Salmonella typhimurium/genética , Antibacterianos/farmacologia , Sorogrupo , Estudos Retrospectivos , Farmacorresistência Bacteriana/genética , Infecções por Salmonella/epidemiologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla/genética
4.
J Infect Public Health ; 16 Suppl 1: 163-171, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37957104

RESUMO

BACKGROUND: The United Arab Emirates (UAE) has witnessed rapid urbanization and a surge in pet ownership, sparking concerns about the possible transfer of antimicrobial resistance (AMR) from pets to humans and the environment. This study delves into the whole-genome sequencing analysis of ESBL-producing E. coli strains from healthy cats and dogs in the UAE, which exhibit multidrug resistance (MDR). Additionally, it provides a genomic exploration of the mobile colistin resistance gene mcr-1.1, marking the first instance of its detection in Middle Eastern pets. METHODS: We investigate 17 ESBL-producing E. coli strains from healthy UAE pets using WGS and bioinformatics analysis to identify genes encoding virulence factors, assign diverse typing schemes to the isolates, and scrutinize the presence of AMR genes. Furthermore, we characterized plasmid contigs housing the mcr-1.1 gene and conducted phylogenomic analysis to evaluate their relatedness to previously identified UAE isolates. RESULTS: Our study unveiled a variety of virulence factor-encoding genes within the isolates, with fimH emerging as the most prevalent. Regarding ß-lactamase resistance genes, the blaCTX group 1 gene family predominated, with CTX-M-15 found in 52.9% (9/17) of the isolates, followed by CTX-M-55 in 29.4% (5/17). These isolates were categorized into multiple sequence types (STs), with the epidemic ST131 being the most frequent. The presence of the mcr-1.1 gene, linked to colistin resistance, was confirmed in two isolates. These isolates belonged to ST1011 and displayed distinct profiles of ß-lactamase resistance genes. Phylogenomic analysis revealed close connections between the isolates and those from chicken meat in the UAE. CONCLUSION: Our study underscores the presence of MDR ESBL-producing E. coli in UAE pets. The identification of mcr-1.1-carrying isolates warrants the urgency of comprehensive AMR surveillance and highlights the role of companion animals in AMR epidemiology. These findings underscore the significance of adopting a One Health approach to mitigate AMR transmission risks effectively.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Saúde Única , Humanos , Gatos , Animais , Cães , Escherichia coli , Colistina/farmacologia , Galinhas , Antibacterianos/farmacologia , Proteínas de Escherichia coli/genética , Emirados Árabes Unidos/epidemiologia , beta-Lactamases/genética , beta-Lactamases/farmacologia , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Plasmídeos/genética , Genômica , Carne
5.
Foods ; 12(16)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37628060

RESUMO

This study aimed to investigate the occurrence and characteristics of Salmonella isolates in salad vegetables in the United Arab Emirates (UAE). Out of 400 samples tested from retail, only 1.25% (95% confidence interval, 0.41-2.89) were found to be positive for Salmonella, all of which were from conventional local produce, presented at ambient temperature, and featured as loose items. The five Salmonella-positive samples were arugula (n = 3), dill (n = 1), and spinach (n = 1). The Salmonella isolates from the five samples were found to be pan-susceptible to a panel of 12 antimicrobials tested using a disc diffusion assay. Based on whole-genome sequencing (WGS) analysis, only two antimicrobial resistance genes were detected-one conferring resistance to aminoglycosides (aac(6')-Iaa) and the other to fosfomycin (fosA7). WGS enabled the analysis of virulence determinants of the recovered Salmonella isolates from salad vegetables, revealing a range from 152 to 165 genes, collectively grouped under five categories, including secretion system, fimbrial adherence determinants, macrophage-inducible genes, magnesium uptake, and non-fimbrial adherence determinants. All isolates were found to possess genes associated with the type III secretion system (TTSS), encoded by Salmonella pathogenicity island-1 (SPI-1), but various genes associated with the second type III secretion system (TTSS-2), encoded by SPI-2, were absent in all isolates. Combining the mean prevalence of Salmonella with information regarding consumption in the UAE, an exposure of 0.0131 salmonellae consumed per person per day through transmission via salad vegetables was calculated. This exposure was used as an input in a beta-Poisson dose-response model, which estimated that there would be 10,584 cases of the Salmonella infection annually for the entire UAE population. In conclusion, salad vegetables sold in the UAE are generally safe for consumption regarding Salmonella occurrence, but occasional contamination is possible. The results of this study may be used for the future development of risk-based food safety surveillance systems in the UAE and to elaborate on the importance for producers, retailers, and consumers to follow good hygiene practices, particularly for raw food items such as leafy salad greens.

6.
Front Microbiol ; 14: 1160244, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234542

RESUMO

The similarity of the Listeria innocua genome with Listeria monocytogenes and their presence in the same niche may facilitate gene transfer between them. A better understanding of the mechanisms responsible for bacterial virulence requires an in-depth knowledge of the genetic characteristics of these bacteria. In this context, draft whole genome sequences were completed on five L. innocua isolated from milk and dairy products in Egypt. The assembled sequences were screened for antimicrobial resistance and virulence genes, plasmid replicons and multilocus sequence types (MLST); phylogenetic analysis of the sequenced isolates was also performed. The sequencing results revealed the presence of only one antimicrobial resistance gene, fosX, in the L. innocua isolates. However, the five isolates carried 13 virulence genes involved in adhesion, invasion, surface protein anchoring, peptidoglycan degradation, intracellular survival, and heat stress; all five lacked the Listeria Pathogenicity Island 1 (LIPI-1) genes. MLST assigned these five isolates into the same sequence type (ST), ST-1085; however, single nucleotide polymorphism (SNP)-based phylogenetic analysis revealed 422-1,091 SNP differences between our isolates and global lineages of L. innocua. The five isolates possessed an ATP-dependent protease (clpL) gene, which mediates heat resistance, on a rep25 type plasmids. Blast analysis of clpL-carrying plasmid contigs showed approximately 99% sequence similarity to the corresponding parts of plasmids of L. monocytogenes strains 2015TE24968 and N1-011A previously isolated from Italy and the United States, respectively. Although this plasmid has been linked to L. monocytogenes that was responsible for a serious outbreak, this is the first report of L. innocua containing clpL-carrying plasmids. Various genetic mechanisms of virulence transfer among Listeria species and other genera could raise the possibility of the evolution of virulent strains of L. innocua. Such strains could challenge processing and preservation protocols and pose health risks from dairy products. Ongoing genomic research is necessary to identify these alarming genetic changes and develop preventive and control measures.

7.
Int J Food Microbiol ; 398: 110224, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37167788

RESUMO

The occurrence and counts of extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli in retail chicken sold in the United Arab Emirates (UAE) were investigated in this study. Results indicated that 79.68 % of chicken carcasses (251/315) sampled from UAE supermarkets harbored ESBL-producing E. coli. About half (51.75 % [163/315]) of the tested samples had an ESBL-producing E. coli count range between ≥3 log10 and < 5 log10 CFU/g. The antimicrobial resistance profiles of a subset of 100 isolates showed high rates of non-susceptibility to clinically significant antibiotics, particularly ciprofloxacin (80 %) and cefepime (46 %). Moreover, 7 % of the isolates exhibited resistance to colistin, with PCR-based screening revealing the presence of the mcr-1 gene in all colistin-resistant isolates. Multiplex PCR screening identified blaCTX-M and blaTEM genes as the most frequently presented genes among the phenotypically confirmed ESBL-producing E. coli. Further whole-genome sequencing and bioinformatic analysis of 27 ESBL-producing E. coli isolates showed that the gene family blaCTX group 1 was the most prevalent, notably CTX-M-55 (55.55 % [15/27]), followed by CTX-M-15 (22.22 % [6/27]). The most common sequence types (STs) were ST359 and ST1011, with three evident clusters identified based on phylogenomic analysis, aligned with isolates from specific production companies. Analysis of plasmid incompatibility types revealed IncFIB, IncFII, Incl2, and IncX1 as the most commonly featured plasmids. The findings of this study indicate a noticeable prevalence and high counts of ESBL-producing E. coli in chicken sampled from supermarkets in the UAE. The high rates of antimicrobial resistance to clinically important antibiotics highlight the potential public health risk associated with consuming chicken contaminated with ESBL-producing E. coli. Overall, this study emphasizes the importance of continued antimicrobial resistance monitoring in the UAE food chain and calls for further exposure risk assessment of the consumption of ESBL-producing E. coli via chicken meat.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Animais , Escherichia coli , Antibacterianos/farmacologia , Galinhas/genética , Colistina , Supermercados , Emirados Árabes Unidos , beta-Lactamases/genética , Farmacorresistência Bacteriana/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Proteínas de Escherichia coli/genética , Genômica , Plasmídeos , Carne
8.
Vet Microbiol ; 278: 109634, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36610099

RESUMO

The emergence and dissemination of the extended spectrum ß-lactamase (ESBL)-producing Enterobacteriaceae harbouring antimicrobial resistance (AMR) genes has diminished the potential options for treating multidrug-resistant (MDR) bacterial infections. Until now, numerous studies reported the spreading of critical plasmid-borne AMR genes from different sources worldwide. While the knowledge on the occurrence of the plasmid-borne AMR genes, especially mcr genes in the dead chick embryos, remains obscure. A retrospective study was conducted to detect the presence of the mcr genes in forty-five Salmonella enterica isolates recovered from 2139 dead chick embryo samples, from breeding chicken hatcheries in Henan, China. Using multiplex PCR, we found only four isolates out of the forty-five were mcr-9-positive. These four isolates were found to be MDR, ESBL- producing and showed resistance to 10 antimicrobial drugs. Additionally, mcr-9 harbouring plasmids were successfully transferred into Escherichia coli (E. coli) J53 by conjugation and the mcr-9 gene was confirmed by PCR. We also found that the transconjugants exhibited higher MICs for ampicillin, gentamycin and colistin than the recipient. Whole-genome sequence analysis showed that the four isolates belonged to Salmonella Thompson ST26 and harboured IncHI2 plasmid replicon. Furthermore, the mcr-9 harbouring plasmids were reconstructed using in silico tools and found to be carried other AMR genes (blaDHA-1 and qnrB4). The studied isolates carried the typical virulence factors from Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2), in addition to pef and csg operons which are important in host adhesion and biofilm formation. The mgtC gene, which is involved in phagocytosis, has also been identified. Together, the increase in the phenotypic resistance of the transconjugants and the plasmid in silico reconstruction analysis confirmed that the corresponding resistance genes might be located together on the same plasmid. To track the potential phylogenomic relations of our detected ESBL S. Thompson isolates, we constructed a phylogenomic tree with available ESBL S. Thompson genomes (n = 26) that were reported worldwide. The studied isolates were independently clustered together with four other Chinese isolates of food origin in one clade, providing strong evidence of a potential recent and wide dissemination of ESBL S. Thompson across the food chain in China. In conclusion, we report the detection of four highly virulent ESBL-producing S. Thompson ST26 isolates harbouring mcr-9 gene obtained from dead chick embryos in Henan, China.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Embrião de Galinha , Animais , Escherichia coli/genética , Antibacterianos/farmacologia , Proteínas de Escherichia coli/genética , Estudos Retrospectivos , Colistina , Plasmídeos/genética , Salmonella/genética , Enterobacteriaceae/genética , Genômica , beta-Lactamases/genética , Testes de Sensibilidade Microbiana/veterinária
9.
Microbiol Spectr ; 10(5): e0125722, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36047803

RESUMO

Antimicrobial-resistant Salmonella enterica poses a significant public health concern worldwide. However, the dissemination of Salmonella enterica among food animals in eastern China has not been fully addressed. Here, we demonstrated the antimicrobial resistance (AMR) patterns and the whole-genome characterization of 105 S. enterica isolates from 1,480 fecal samples and anal swabs collected from 22 different farms (chickens, ducks, and pigs) and two live animal markets located in Zhejiang and Fujian Provinces in eastern China in 2019. The prevalence of isolates in duck farms (19.17%, 23/120) was statistically significantly higher (P < 0.001) than that in chicken farms (6.61%, 37/523) and pig farms (3.50%, 7/200). Among these isolates, 75.26% (79/105) were multidrug resistant, with the highest rates of resistance to tetracycline (76.20%) and ampicillin (67.62%) and the lowest resistance rate to meropenem (0.00%). The serotypes were consistent with sequence types and were closely related to the sampling animal species and sites. S. enterica serotype Kentucky (20.95%, 22/105) was the most frequent serotype and harbored more AMR patterns and genes than others. Furthermore, IncFII(S) and IncHI2 were the most prevalent replicons. A total of 44 acquired AMR genes were found. Among those genes, aac(6')-Iaa, blaTEM-1B, floR, dfrA14, fosA7, mph(A), qnrS1, sul1, tet(A), and ARR-3 were the dominant AMR genes mediating the AMR toward aminoglycosides, ß-lactams, phenicol, trimethoprim, fosfomycin, macrolide, quinolone, sulfonamides, tetracycline, and rifampin, respectively. The consistency of acquired AMR genes with AMR phenotypes for ampicillin, ceftiofur, ceftazidime, meropenem, sulfamethoxazole-trimethoprim, and tetracycline was >90%. Together, our study highlights the application of whole-genome sequencing to assess veterinary public health threats. IMPORTANCE Public health is a significant concern in China, and the foodborne pathogen Salmonella, which is spread via the animal-borne food chain, plays an important role in the overall disease burden in China annually. The development of advanced sequencing technologies has introduced a new way of understanding emerging pathogens. However, the routine surveillance application of this method in China remains in its infancy. Here, we applied a pool of all isolates from the prevalence data in Zhejiang and Fujian for whole-genome sequencing and combined these data with the cutting-edge bioinformatic analysis pipeline for one-step determination of the complete genetic makeup for all 105 genomes. The illustrated method could provide a cost-effective approach, without labor-intensive laboratory characterization, for predicting serotypes, genotypes, plasmid types, antimicrobial resistance genes, and virulence genes, and thus would provide essential knowledge for emerging pathogens. Our findings and perspectives are essential for delivering updated knowledge on foodborne pathogens in an understudied region in China.


Assuntos
Anti-Infecciosos , Fosfomicina , Quinolonas , Salmonella enterica , Animais , Suínos , Salmonella enterica/genética , Galinhas , Patos , Farmacorresistência Bacteriana Múltipla/genética , Fazendas , Meropeném/farmacologia , Fosfomicina/farmacologia , Ceftazidima/farmacologia , Rifampina/farmacologia , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Quinolonas/farmacologia , Genômica , Ampicilina/farmacologia , Aminoglicosídeos/farmacologia , Macrolídeos/farmacologia , Trimetoprima/farmacologia , Sulfonamidas/farmacologia , Sulfametoxazol/farmacologia , Tetraciclinas/farmacologia , Testes de Sensibilidade Microbiana
10.
Front Immunol ; 13: 973224, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032095

RESUMO

The fatal impairment of the intestinal mucosal barrier of chicks caused by Salmonella significantly resulting economic losses in the modern poultry industry. Probiotics are recognized for beneficially influencing host immune responses, promoting maintenance of intestinal epithelial integrity, antagonistic activity against pathogenic microorganisms and health-promoting properties. Some basic studies attest to probiotic capabilities and show that Lacticaseibacillus rhamnosus could protect intestinal mucosa from injury in animals infected with Salmonella Typhimurium. However, the mechanisms underlying its protective effects in chicks are still not fully understood. Here, we used the chick infection model combined with histological, immunological, and molecular approaches to address this question. The results indicated that L. rhamnosus significantly reduced the diarrhea rate and increased the daily weight gain and survival rate of chicks infected with S. Typhimurium. Furthermore, we found that L. rhamnosus markedly improved the immunity of gut mucosa by reducing apoptotic cells, hence effectively inhibiting intestinal inflammation. Notably, pre-treatment chicks with L. rhamnosus balanced the expression of interleukin-1ß and interleukin-18, moderated endotoxin and D-lactic acid levels, and expanded tight junction protein levels (Zonula occluden-1 and Claudin-1), enhanced the function of the intestinal mucosal epithelial cells. Additionally, investigations using full-length 16S rRNA sequencing also demonstrated that L. rhamnosus greatly weakened the adhesion of Salmonella, the mainly manifestation is the improvement of the diversity of intestinal microbiota in infected chicks. Collectively, these results showed the application of L. rhamnosus against Salmonella fatal infection by enhancing barrier integrity and the stability of the gut microbiota and reducing inflammation in new hatch chicks, offering new antibiotic alternatives for farming animals.


Assuntos
Lacticaseibacillus rhamnosus , Microbiota , Infecções por Salmonella , Animais , Galinhas , Inflamação , RNA Ribossômico 16S , Salmonella typhimurium
11.
Int J Food Microbiol ; 379: 109835, 2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-35863148

RESUMO

Plasmid-borne colistin resistance is considered one of the most complex public health concerns worldwide. Several studies reported the presence of the mcr-1.1 harboring Salmonella from the foodstuffs worldwide; still, there is a knowledge gap about the occurrence of these isolates in the Middle East. In this study, we report an mcr-1.1-mediated colistin resistance in two multidrug-resistant (MDR) S. Minnesota (denoted as Sal_2 and Sal_10), with both being also extended-spectrum ß-lactamase (ESBL) producing. These isolates have been recovered from two independent samples out of 315 chilled chicken meat tested from retail supermarkets in the United Arab Emirates (UAE). Based on whole-genome sequencing (WGS) analysis, both isolates belonged to the same Sequence Type (ST) ST548. They shared the same genes encoding resistance to the following antimicrobials: polymyxin (mcr-1.1), phenicol (floR), quinolone (qnrB19), aminoglycoside (aac(6')-Iaa), tetracycline (tet(A)), and sulfonamide (sul2). However, the isolates featured different patterns of ß-lactamase resistance genes, which included blaCTX-M-55 (ESBL-ß-lactamase) and blaCMY-2 (AmpC-ß-lactamase) in the isolate Sal_2, and blaTEM-215 (ESBL-ß-lactamase) in the isolate Sal_10. WGS analysis inferred that both S. Minnesota isolates in this study carry an IncX4 plasmid harboring the mcr-1.1 variant. To understand the possible origin of the two mcr-1.1 carrying S. Minnesota isolated from retail chicken meat in this study, we conducted a phylogenomic analysis using available genomes of S. enterica, which harbored mcr-1.1 gene (n = 240, from the Middle East and Asian countries) deposited in the NCBI database. We found that Sal_2 and Sal_10 independently clustered together with other isolates detected in China, mainly from the chicken origin and to a lesser extent from human clinical origin. The finding of mcr-producing colistin-resistant strains in retail chicken meat warrants a more comprehensive One Health investigations involving strains from animals, retail food chains, and human clinical isolates at the national level in the UAE.


Assuntos
Colistina , Proteínas de Escherichia coli , Animais , Antibacterianos/farmacologia , Galinhas/genética , Colistina/farmacologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Genômica , Humanos , Carne/análise , Plasmídeos/genética , Salmonella/genética , Supermercados , beta-Lactamases/genética
12.
Front Microbiol ; 12: 770813, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956131

RESUMO

Antimicrobial resistance is a major concern in the dairy industry. This study investigated the prevalence, antimicrobial resistance phenotypes, and genome sequencing of Gram-negative bacteria isolated from clinical (n = 350) and subclinical (n = 95) bovine mastitis, and raw unpasteurized milk (n = 125). Klebsiella pneumoniae, Aeromonas hydrophila, Enterobacter cloacae (100% each), Escherichia coli (87.78%), and Proteus mirabilis (69.7%) were the most prevalent multidrug-resistant (MDR) species. Extensive drug-resistance (XDR) phenotype was found in P. mirabilis (30.30%) and E. coli (3.33%) isolates. Ten isolates (four E. coli, three Klebsiella species and three P. mirabilis) that displayed the highest multiple antibiotic resistance (MAR) indices (0.54-0.83), were exposed to whole-genome sequencing (WGS). Two multilocus sequence types (MLST): ST2165 and ST7624 were identified among the sequenced E. coli isolates. Three E. coli isolates (two from clinical mastitis and one from raw milk) belonging to ST2165 showed similar profile of plasmid replicon types: IncFIA, IncFIB, IncFII, and IncQ1 with an exception to an isolate that contained IncR, whereas E. coli ST7624 showed a different plasmid profile including IncHI2, IncHI2A, IncI1α, and IncFII replicon types. ResFinder findings revealed the presence of plasmid-mediated colistin mcr-10 and fosfomycin fosA5 resistance genes in a K. pneumoniae (K1) isolate from bovine milk. Sequence analysis of the reconstructed mcr-10 plasmid from WGS of K1 isolate, showed that mcr-10 gene was bracketed by xerC and insertion sequence IS26 on an IncFIB plasmid. Phylogenetic analysis revealed that K1 isolate existed in a clade including mcr-10-harboring isolates from human and environment with different STs and countries [United Kingdom (ST788), Australia (ST323), Malawi (ST2144), Myanmar (ST705), and Laos (ST2355)]. This study reports the first emergence of K. pneumoniae co-harboring mcr-10 and fosA5 genes from bovine milk in the Middle East, which constitutes a public health threat and heralds the penetration of the last-resort antibiotics. Hence, prudent use of antibiotics in both humans and animals and antimicrobial surveillance plans are urgently required.

13.
Front Microbiol ; 12: 684400, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497590

RESUMO

Salmonella spp. is recognized as an important zoonotic pathogen. The emergence of antimicrobial resistance in Salmonella enterica poses a great public health concern worldwide. While the knowledge on the incidence and the characterization of different S. enterica serovars causing chick embryo death remains obscure in China. In this study, we obtained 45 S. enterica isolates from 2,139 dead chick embryo samples collected from 28 breeding chicken hatcheries in Henan province. The antimicrobial susceptibility assay was performed by the broth microdilution method and the results showed that 31/45 (68.8%) isolates were multidrug-resistant (≥3 antimicrobial classes). Besides the highest resistance rate was observed in the aminoglycoside class, all the isolates were susceptible to chloramphenicol, azithromycin, and imipenem. Furthermore, genomic characterization revealed that S. Enteritidis (33.33%; 15/45) was a frequent serovar that harbored a higher number of virulence factors compared to other serovars. Importantly, genes encoding ß-lactamases were identified in three serovars (Thompson, Enteritidis, and Kottbus), whereas plasmid-mediated quinolone resistance genes (qnrB4) were detected in certain isolates of S. Thompson and the two S. Kottbus isolates. All the examined isolates harbored the typical virulence factors from Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2). Additionally, a correlation analysis between the antimicrobial resistance genes, phenotype, and plasmids was conducted among Salmonella isolates. It showed strong positive correlations (r < 0.6) between the different antimicrobial-resistant genes belonging to certain antimicrobial classes. Besides, IncF plasmid showed a strong negative correlation (r > -0.6) with IncHI2 and IncHI2A plasmids. Together, our study demonstrated antimicrobial-resistant S. enterica circulating in breeding chicken hatcheries in Henan province, highlighting the advanced approach, by using genomic characterization and statistical analysis, in conducting the routine monitoring of the emerging antimicrobial-resistant pathogens. Our findings also proposed that the day-old breeder chicks trading could be one of the potential pathways for the dissemination of multidrug-resistant S. enterica serovars.

14.
Front Microbiol ; 12: 702909, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394048

RESUMO

Salmonellosis represents a growing threat to global public health. Salmonella enterica remains the leading cause of bacterial foodborne diseases in China. Salmonella enterica serovar Rissen (S. Rissen) has been recognized as one of the emerging serovars among humans in different countries worldwide. However, knowledge on the prevalence of S. Rissen in China is largely lacking. To address essential epidemiological information for S. Rissen in China, a total of 1,182 S. Rissen isolates recovered from samples across the food chain were collected from 16 provinces or province-level cities between 1995 and 2019. Risk factors due to the consumption of animal-derived food products were also analyzed. We found S. Rissen is widely distributed, especially in the Eastern and Southern parts of China, and there is an increasing frequency in recent years as evidenced by the greater number of isolates recovered in 2016, 2017, and 2018. Interestingly, the majority of S. Rissen isolates recovered in this study were from human samples (63.4%; 749/1182), remarkably, 58.4% (438/749) were from asymptomatic carriers. We obtained most of the S. Rissen isolates from humans from Guangxi (59.5%; 446/749) and Shanghai (29.5%; 221/749). Among 302 human diarrheal isolates (40.3%; 302/749), we found 44.6% (139/311) of S. Rissen in children with diarrhea (age below 10 years old). This is of clinical significance as diarrhea is one of the crucial causes of child mortality globally and our findings here highlighted the importance of Salmonella infections in Chinese children. Additionally, S. Rissen isolates were also found to be associated with pork and poultry products in China. This study projected the most updated national-wide study of S. Rissen isolates obtained from different sources in China over the past two decades. Continued surveillance is warranted to further monitor this emerging serovar in China and elsewhere over the world.

15.
Front Cell Infect Microbiol ; 11: 681588, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34327151

RESUMO

In this study, multidrug-resistant (MDR) Escherichia coli isolates from retail food and humans assigned into similar Multilocus Sequence Types (MLST) were analyzed using whole genome sequencing (WGS). In silico analysis of assembled sequences revealed the existence of multiple resistance genes among the examined E. coli isolates. Of the six CTX-M-producing isolates from retail food, blaCTX-M-14 was the prevalent variant identified (83.3%, 5/6). Two plasmid-mediated fosfomycin resistance genes, fosA3, and fosA4, were detected from retail food isolates (one each from chicken and beef), where fosA4 was identified in the chicken isolate 82CH that also carried the colistin resistance gene mcr-1. The blaCTX-M-14 and fosA genes in retail food isolates were located adjacent to insertion sequences ISEcp1 and IS26, respectively. Sequence analysis of the reconstructed mcr-1 plasmid (p82CH) showed 96-97% identity to mcr-1-carrying IncI2 plasmids previously identified in human and food E. coli isolates from Egypt. Hierarchical clustering of core genome MLST (HierCC) revealed clustering of chicken isolate 82CH, co-harboring mcr-1 and fosA4 genes, with a chicken E. coli isolate from China at the HC200 level (≤200 core genome allelic differences). As E. coli co-harboring mcr-1 and fosA4 genes has only been recently reported, this study shows rapid spread of this genotype that shares similar genetic structures with regional and international E. coli lineages originating from both humans and food animals. Adopting WGS-based surveillance system is warranted to facilitate monitoring the international spread of MDR pathogens.


Assuntos
Escherichia coli , Contaminação de Alimentos , Carne/microbiologia , Animais , Antibacterianos/farmacologia , Galinhas , China , Farmacorresistência Bacteriana Múltipla , Egito , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/genética , Humanos , Tipagem de Sequências Multilocus , Plasmídeos/genética , beta-Lactamases/genética
17.
Antibiotics (Basel) ; 9(10)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33007986

RESUMO

Salmonella spp. are recognized as important foodborne pathogens globally. Salmonella enterica serovar Rissen is one of the important Salmonella serovars linked with swine products in numerous countries and can transmit to humans by food chain contamination. Worldwide emerging S. Rissen is considered as one of the most common pathogens to cause human salmonellosis. The objective of this study was to determine the antimicrobial resistance properties and patterns of Salmonella Rissen isolates obtained from humans, animals, animal-derived food products, and the environment in China. Between 2016 and 2019, a total of 311 S. Rissen isolates from different provinces or province-level cities in China were included here. Bacterial isolates were characterized by serotyping and antimicrobial susceptibility testing. Minimum inhibitory concentration (MIC) values of 14 clinically relevant antimicrobials were obtained by broth microdilution method. S. Rissen isolates from humans were found dominant (67%; 208/311). S. Rissen isolates obtained from human patients were mostly found with diarrhea. Other S. Rissen isolates were acquired from food (22%; 69/311), animals (8%; 25/311), and the environment (3%; 9/311). Most of the isolates were resistant to tetracycline, trimethoprim-sulfamethoxazole, chloramphenicol, streptomycin, sulfisoxazole, and ampicillin. The S. Rissen isolates showed susceptibility against ceftriaxone, ceftiofur, gentamicin, nalidixic acid, ciprofloxacin, and azithromycin. In total, 92% of the S. Rissen isolates were multidrug-resistant and ASSuT (27%), ACT (25%), ACSSuT (22%), ACSSuTAmc (11%), and ACSSuTFox (7%) patterns were among the most prevalent antibiotic resistance patterns found in this study. The widespread dissemination of antimicrobial resistance could have emerged from misuse of antimicrobial agents in animal husbandry in China. These findings could be useful for rational antimicrobial usage against Salmonella Rissen infections.

18.
Front Vet Sci ; 7: 617, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33062654

RESUMO

The prevalence of antimicrobial resistance in zoonotic Salmonella is a significant ongoing concern over the world. Several reports have investigated the prevalence of Salmonella infections in the farm animals in China; however, there is only limited knowledge about the Salmonella cross-contamination in the slaughterhouses. Moreover, the application of genomic approaches for understanding the cross-contamination in the food-animal slaughterhouses is still in its infancy in China. In the present study, we have isolated 105 Salmonella strains from pig carcasses and environment samples collected from four independent slaughterhouses in Jiangsu, China. All the Salmonella isolates were subjected to whole genome sequencing, bioinformatics analysis for serovar predictions, multi-locus sequence types, antimicrobial resistance genes, and plasmid types by using the in-house Galaxy platform. The antimicrobial resistance of Salmonella isolates was determined using a minimal inhibitory concentration assay with 14 antimicrobials. We found that the predominant serovar and serogroup was S. Derby and O:4(B), with a prevalence of 41.9 and 55%, respectively. All the isolates were multidrug-resistant and the highest resistance was observed against antimicrobials tetracycline (95.4%) and trimethoprim and sulfamethoxazole (90.9%). Additionally, the colistin-resistant determinant mcr-1 gene was detected in five (4.8%) strains. Our study demonstrated the prevalence of antimicrobial resistance in Salmonella strains isolated from pig slaughterhouses in China and suggested that the genomic platform can serve as routine surveillance along with the food-chain investigation.

20.
Artigo em Inglês | MEDLINE | ID: mdl-32714906

RESUMO

Salmonella enterica serovar 4,[5],12:i:-, so-called Typhimurium monophasic variant, has become one of the most frequently isolated serovars both in humans and in animals all over the world. The increasing prevalence of mcr-1-carrying Salmonella poses significant global health concerns. However, the potential role of Salmonella 4,[5],12:i:- in mcr-1 gene migration through the food chain to the human remains obscure. Here, we investigated 337 Salmonella isolates from apparently healthy finishing pigs, which is rarely studied, obtained from pig farms and slaughterhouses in China. The mcr-1 gene was found in four colistin-resistant S. enterica 4,[5],12:i:- isolates. Notably, all four isolates belonged to sequence type 34 (ST34) with multidrug resistance phenotype. Further genomic sequencing and antimicrobial resistance characterization confirmed that mcr was responsible for the colistin resistance, and the conjugation assay demonstrated that three of four isolates carried mcr-1 in IncHI2 plasmid. Importantly, mcr-1 and class-1 integron were found to co-localize in two strains with IncHI2 plasmid. By collecting all the mcr-1-carrying Typhimurium and monophasic variant strains across the food chain (farm animals, animal-origin food, and humans), our phylogenomic analysis of available 66 genomes, including four strains in this study, demonstrated an independent phylogenetic cluster of all eight Chinese swine-originated isolates and one human isolate. Together, this study provides direct evidence for clonal and pork-borne transmission of mcr-1 by Salmonella 4,[5],12:i:- ST34 in China and highlighted a domestication pathway by acquisition of additional antimicrobial resistance determinants in Chinese ST34 isolates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...