Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol Resour ; 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37548515

RESUMO

Environmental DNA (eDNA) metabarcoding has gained growing attention as a strategy for monitoring biodiversity in ecology. However, taxa identifications produced through metabarcoding require sophisticated processing of high-throughput sequencing data from taxonomically informative DNA barcodes. Various sets of universal and taxon-specific primers have been developed, extending the usability of metabarcoding across archaea, bacteria and eukaryotes. Accordingly, a multitude of metabarcoding data analysis tools and pipelines have also been developed. Often, several developed workflows are designed to process the same amplicon sequencing data, making it somewhat puzzling to choose one among the plethora of existing pipelines. However, each pipeline has its own specific philosophy, strengths and limitations, which should be considered depending on the aims of any specific study, as well as the bioinformatics expertise of the user. In this review, we outline the input data requirements, supported operating systems and particular attributes of thirty-two amplicon processing pipelines with the goal of helping users to select a pipeline for their metabarcoding projects.

2.
BMC Genomics ; 23(1): 816, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482300

RESUMO

BACKGROUND: Freshwaters are exposed to multiple anthropogenic stressors, leading to habitat degradation and biodiversity decline. In particular, agricultural stressors are known to result in decreased abundances and community shifts towards more tolerant taxa. However, the combined effects of stressors are difficult to predict as they can interact in complex ways, leading to enhanced (synergistic) or decreased (antagonistic) response patterns. Furthermore, stress responses may remain undetected if only the abundance changes in ecological experiments are considered, as organisms may have physiological protective pathways to counteract stressor effects. Therefore, we here used transcriptome-wide sequencing data to quantify single and combined effects of elevated fine sediment deposition, increased salinity and reduced flow velocity on the gene expression of the amphipod Gammarus fossarum in a mesocosm field experiment. RESULTS: Stressor exposure resulted in a strong transcriptional suppression of genes involved in metabolic and energy consuming cellular processes, indicating that G. fossarum responds to stressor exposure by directing energy to vitally essential processes. Treatments involving increased salinity induced by far the strongest transcriptional response, contrasting the observed abundance patterns where no effect was detected. Specifically, increased salinity induced the expression of detoxification enzymes and ion transporter genes, which control the membrane permeability of sodium, potassium or chloride. Stressor interactions at the physiological level were mainly antagonistic, such as the combined effect of increased fine sediment and reduced flow velocity. The compensation of the fine sediment induced effect by reduced flow velocity is in line with observations based on specimen abundance data. CONCLUSIONS: Our findings show that gene expression data provide new mechanistic insights in responses of freshwater organisms to multiple anthropogenic stressors. The assessment of stressor effects at the transcriptomic level and its integration with stressor effects at the level of specimen abundances significantly contribute to our understanding of multiple stressor effects in freshwater ecosystems.


Assuntos
Ecossistema
3.
Gigascience ; 112022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35852418

RESUMO

Metazoan metabarcoding is emerging as an essential strategy for inventorying biodiversity, with diverse projects currently generating massive quantities of community-level data. The potential for integrating across such data sets offers new opportunities to better understand biodiversity and how it might respond to global change. However, large-scale syntheses may be compromised if metabarcoding workflows differ from each other. There are ongoing efforts to improve standardization for the reporting of inventory data. However, harmonization at the stage of generating metabarcode data has yet to be addressed. A modular framework for harmonized data generation offers a pathway to navigate the complex structure of terrestrial metazoan biodiversity. Here, through our collective expertise as practitioners, method developers, and researchers leading metabarcoding initiatives to inventory terrestrial biodiversity, we seek to initiate a harmonized framework for metabarcode data generation, with a terrestrial arthropod module. We develop an initial set of submodules covering the 5 main steps of metabarcode data generation: (i) sample acquisition; (ii) sample processing; (iii) DNA extraction; (iv) polymerase chain reaction amplification, library preparation, and sequencing; and (v) DNA sequence and metadata deposition, providing a backbone for a terrestrial arthropod module. To achieve this, we (i) identified key points for harmonization, (ii) reviewed the current state of the art, and (iii) distilled existing knowledge within submodules, thus promoting best practice by providing guidelines and recommendations to reduce the universe of methodological options. We advocate the adoption and further development of the terrestrial arthropod module. We further encourage the development of modules for other biodiversity fractions as an essential step toward large-scale biodiversity synthesis through harmonization.


Assuntos
Artrópodes , Animais , Artrópodes/genética , Biodiversidade , Código de Barras de DNA Taxonômico , Estudos Longitudinais
4.
Mol Ecol Resour ; 22(4): 1231-1246, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34551203

RESUMO

Metabarcoding of DNA extracted from environmental or bulk specimen samples is increasingly used to profile biota in basic and applied biodiversity research because of its targeted nature that allows sequencing of genetic markers from many samples in parallel. To achieve this, PCR amplification is carried out with primers designed to target a taxonomically informative marker within a taxonomic group, and sample-specific nucleotide identifiers are added to the amplicons prior to sequencing. The latter enables assignment of the sequences back to the samples they originated from. Nucleotide identifiers can be added during the metabarcoding PCR and during "library preparation", that is, when amplicons are prepared for sequencing. Different strategies to achieve this labelling exist. All have advantages, challenges and limitations, some of which can lead to misleading results, and in the worst case compromise the fidelity of the metabarcoding data. Given the range of questions addressed using metabarcoding, ensuring that data generation is robust and fit for the chosen purpose is critically important for practitioners seeking to employ metabarcoding for biodiversity assessments. Here, we present an overview of the three main workflows for sample-specific labelling and library preparation in metabarcoding studies on Illumina sequencing platforms; one-step PCR, two-step PCR, and tagged PCR. Further, we distill the key considerations for researchers seeking to select an appropriate metabarcoding strategy for their specific study. Ultimately, by gaining insights into the consequences of different metabarcoding workflows, we hope to further consolidate the power of metabarcoding as a tool to assess biodiversity across a range of applications.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico , Código de Barras de DNA Taxonômico/métodos , Primers do DNA/genética , Biblioteca Gênica , Reação em Cadeia da Polimerase
5.
PeerJ ; 9: e12177, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707928

RESUMO

BACKGROUND: Small and rare specimens can remain undetected when metabarcoding is applied on bulk samples with a high specimen size heterogeneity. This is especially critical for Malaise trap samples, where most of the biodiversity is contributed by small taxa with low biomass. The separation of samples in different size fractions for downstream analysis is one possibility to increase detection of small and rare taxa. However, experiments systematically testing different size sorting approaches and subsequent proportional pooling of fractions are lacking, but would provide important information for the optimization of metabarcoding protocols. We set out to find a size sorting strategy for Malaise trap samples that maximizes taxonomic recovery but remains scalable and time efficient. METHODS: Three Malaise trap samples were sorted into four size classes using dry sieving. Each fraction was homogenized and lysed. The corresponding lysates were pooled to simulate unsorted samples. Pooling was additionally conducted in equal proportions and in four different proportions enriching the small size fraction of samples. DNA from the individual size classes as well as the pooled fractions was extracted and metabarcoded using the FwhF2 and Fol-degen-rev primer set. Additionally, alternative wet sieving strategies were explored. RESULTS: The small size fractions harboured the highest diversity and were best represented when pooling in favour of small specimens. Metabarcoding of unsorted samples decreases taxon recovery compared to size sorted samples. A size separation into only two fractions (below 4 mm and above) can double taxon recovery compared to not size sorting. However, increasing the sequencing depth 3- to 4-fold can also increase taxon recovery to levels comparable with size sorting, but remains biased towards biomass rich taxa in the sample. CONCLUSION: We demonstrate that size fractionation of Malaise trap bulk samples can increase taxon recovery. While results show distinct patterns, the lack of statistical support due to the limited number of samples processed is a limitation. Due to increased speed and lower risk of cross-contamination as well as specimen damage we recommend wet sieving and proportional pooling of the lysates in favour of the small size fraction (80-90% volume). However, for large-scale projects with time constraints, increasing sequencing depth is an alternative solution.

6.
PeerJ ; 9: e11841, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395083

RESUMO

Arthropod communities in buildings have not been extensively studied, although humans have always shared their homes with them. In this study we explored if arthropod DNA can be retrieved and metabarcoded from indoor environments through the collection of dead specimens in light fixtures to better understand what shapes arthropod diversity in our homes. Insects were collected from 45 light fixtures at the Centre for Biodiversity Genomics (CBG, Guelph, Canada), and by community scientists at 12 different residential homes in Southern Ontario. The CBG ground floor of the CBG showed the greatest arthropod diversity, especially in light fixtures that were continuously illuminated. The community scientist samples varied strongly by light fixture type, lightbulb used, time passed since lamp was last cleaned, and specimen size. In all cases, the majority of OTUs was not shared between samples even within the same building. This study demonstrates that light fixtures might be a useful resource to determine arthropod diversity in our homes, but individual samples are likely not representative of the full diversity.

7.
Mol Ecol ; 30(5): 1120-1135, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33432777

RESUMO

High-throughput sequencing (HTS) is increasingly being used for the characterization and monitoring of biodiversity. If applied in a structured way, across broad geographical scales, it offers the potential for a much deeper understanding of global biodiversity through the integration of massive quantities of molecular inventory data generated independently at local, regional and global scales. The universality, reliability and efficiency of HTS data can potentially facilitate the seamless linking of data among species assemblages from different sites, at different hierarchical levels of diversity, for any taxonomic group and regardless of prior taxonomic knowledge. However, collective international efforts are required to optimally exploit the potential of site-based HTS data for global integration and synthesis, efforts that at present are limited to the microbial domain. To contribute to the development of an analogous strategy for the nonmicrobial terrestrial domain, an international symposium entitled "Next Generation Biodiversity Monitoring" was held in November 2019 in Nicosia (Cyprus). The symposium brought together evolutionary geneticists, ecologists and biodiversity scientists involved in diverse regional and global initiatives using HTS as a core tool for biodiversity assessment. In this review, we summarize the consensus that emerged from the 3-day symposium. We converged on the opinion that an effective terrestrial Genomic Observatories network for global biodiversity integration and synthesis should be spatially led and strategically united under the umbrella of the metabarcoding approach. Subsequently, we outline an HTS-based strategy to collectively build an integrative framework for site-based biodiversity data generation.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico , Chipre , Genômica , Reprodutibilidade dos Testes
8.
Sci Total Environ ; 750: 141969, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33182191

RESUMO

Worldwide, multiple stressors affect stream ecosystems and frequently lead to complex and non-linear biological responses. These combined stressor effects on ecologically diverse and functionally important macroinvertebrate communities are often difficult to assess, in particular species-specific responses across many species and effects of different stressors and stressor levels in concert. A central limitation in many studies is the taxonomic resolution applied for specimen identification. DNA metabarcoding can resolve taxonomy and provide greater insights into multiple stressor effects. This was detailed by results of a recent multiple stressor mesocosm experiment, where only for the dipteran family Chironomidae 183 Operational Taxonomic Units (OTUs) could be distinguished. Numerous OTUs showed very different response patterns to multiple stressors. In this study, we applied DNA metabarcoding to assess multiple stressor effects on all non-chironomid invertebrates from the same experiment. In the experiment, we applied three stressors (increased salinity, deposited fine sediment, reduced flow velocity) in a full-factorial design. We compared stressor responses inferred through DNA metabarcoding of the mitochondrial COI gene to responses based on morphotaxonomic taxa lists. We identified 435 OTUs, of which 122 OTUs were assigned to EPT (Ephemeroptera, Plecoptera, Trichoptera) taxa. The most common 35 OTUs alone showed 15 different response patterns to the experimental manipulation, ranging from insensitivity to any applied stressor to sensitivity to single and multiple stressors. These response patterns even comprised differences within one family. The species-specific taxonomic resolution and the inferred response patterns to stressors highlights the potential of DNA metabarcoding in the context of multiple stressor research, even for well-known taxa such as EPT species.


Assuntos
Rios , Salinidade , Animais , Código de Barras de DNA Taxonômico , Ecossistema , Monitoramento Ambiental , Invertebrados/genética
9.
Mol Ecol ; 30(13): 3239-3251, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32799390

RESUMO

Freshwater biomonitoring programmes routinely sample aquatic macroinvertebrates. These samples are time-consuming to collect, as well as challenging and costly to identify reliably genus or species. Environmental DNA (eDNA) metabarcoding has emerged as a surrogate to traditional collection techniques and has been used in whole-community approaches across several taxa and ecosystems. However, the usefulness of eDNA-based detection of freshwater macroinvertebrates has not been extensively explored. Few studies have directly compared bulk sample and eDNA metabarcoding at a local scale to assess how effective each method is at characterizing aquatic macroinvertebrate communities. Here, we collected both eDNA and kicknet samples at the same sample transect locations across nine different streams in southern Ontario, Canada. We observed minimal overlap in community composition between these paired samples. Bulk tissue metabarcoding resulted in a greater proportion of sequences belonging to metazoan taxa (over 99%) than eDNA (12%) and had higher OTU richness for macroinvertebrate taxa. We suggest that degenerate primers are not effective for eDNA metabarcoding due to the high degree of nontarget amplification and subsequently low yield of target DNA. While both bulk sample and eDNA metabarcoding had the power to detect differences between stream communities, eDNA did not represent local communities. Bulk tissue metabarcoding thus provides a more accurate representation of local stream macroinvertebrate communities and is the preferred method if smaller-scale spatial resolution is an important factor in data analyses.


Assuntos
Código de Barras de DNA Taxonômico , DNA Ambiental , Animais , Ecossistema , Monitoramento Ambiental , Água Doce , Ontário
10.
Mol Ecol Resour ; 20(1): 79-96, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31484209

RESUMO

Metabarcoding is often presented as an alternative identification tool to compensate for coarse taxonomic resolution and misidentification encountered with traditional morphological approaches. However, metabarcoding comes with two major impediments which slow down its adoption. First, the picking and destruction of organisms for DNA extraction are time and cost consuming and do not allow organism conservation for further evaluations. Second, current metabarcoding protocols include a PCR enrichment step which induces errors in the estimation of species diversity and relative biomasses. In this study, we first evaluated the capacity of capture enrichment to replace PCR enrichment using controlled freshwater macrozoobenthos mock communities. Then, we tested if DNA extracted from the fixative ethanol (etDNA) of the same mock communities can be used as an alternative to DNA extracted from pools of whole organisms (bulk DNA). We show that capture enrichment provides more reliable and accurate representation of species occurrences and relative biomasses in comparison with PCR enrichment for bulk DNA. While etDNA does not permit to estimate relative biomasses, etDNA and bulk DNA provide equivalent species detection rates. Thanks to its robustness to mismatches, capture enrichment is already an efficient alternative to PCR enrichment for metabarcoding and, if coupled to etDNA, is a time-saver option in studies where presence information only is sufficient.


Assuntos
DNA/genética , Invertebrados/classificação , Invertebrados/genética , Animais , Biodiversidade , DNA/isolamento & purificação , Código de Barras de DNA Taxonômico/métodos , Complexo IV da Cadeia de Transporte de Elétrons/genética , Etanol/química , Água Doce/química , Reação em Cadeia da Polimerase
11.
PeerJ ; 7: e7745, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31608170

RESUMO

Metabarcoding can rapidly determine the species composition of bulk samples and thus aids biodiversity and ecosystem assessment. However, it is essential to use primer sets that minimize amplification bias among taxa to maximize species recovery. Despite this fact, the performance of primer sets employed for metabarcoding terrestrial arthropods has not been sufficiently evaluated. This study tests the performance of 36 primer sets on a mock community containing 374 insect species. Amplification success was assessed with gradient PCRs and the 21 most promising primer sets selected for metabarcoding. These 21 primer sets were also tested by metabarcoding a Malaise trap sample. We identified eight primer sets, mainly those including inosine and/or high degeneracy, that recovered more than 95% of the species in the mock community. Results from the Malaise trap sample were congruent with the mock community, but primer sets generating short amplicons produced potential false positives. Taxon recovery from both mock community and Malaise trap sample metabarcoding were used to select four primer sets for additional evaluation at different annealing temperatures (40-60 °C) using the mock community. The effect of temperature varied by primer pair but overall it only had a minor effect on taxon recovery. This study reveals the weak performance of some primer sets employed in past studies. It also demonstrates that certain primer sets can recover most taxa in a diverse species assemblage. Thus, based our experimental set up, there is no need to employ several primer sets targeting the same gene region. We identify several suitable primer sets for arthropod metabarcoding, and specifically recommend BF3 + BR2, as it is not affected by primer slippage and provides maximal taxonomic resolution. The fwhF2 + fwhR2n primer set amplifies a shorter fragment and is therefore ideal when targeting degraded DNA (e.g., from gut contents).

12.
Mol Ecol Resour ; 19(4): 893-899, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30963710

RESUMO

Metabarcoding is increasingly used to assess species diversity by high-throughput sequencing where millions of sequences can be generated in parallel and multiple samples can be analysed in one sequencing run. Generating amplified fragments with a unique sequence identifier ('tag') for each sample is crucial, as it allows assigning sequences to the original samples. The tagging through so-called fusion primers is a fast and cheap alternative to commercially produced ligation-based kits. However, little is known about potential bias and inconsistencies introduced by the long nucleotide tail attached to those primers, which could lead to deficient reports of community composition in metabarcoding studies. We therefore tested the consistency and taxa detection efficiency of fusion primers in (1) a one-step and (2) two-step PCR protocol as well as (3) a commercially manufactured Illumina kit using mock communities of known composition. The Illumina kit delivered the most consistent results and detected the highest number of taxa. However, success of the two-step PCR approach was only marginally lower compared to the kit with the additional advantage of a much more competitive price per library. While most taxa were also detected with the one-step PCR approach, the consistency between replicates including read abundance was substantially lower. Our results highlight that method choice depends on the precision needed for analysis as well as on economic considerations and recommend the Illumina kit to obtain most accurate results and the two-step PCR approach as a much cheaper yet very robust alternative.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Biblioteca Gênica , Genética Populacional/métodos , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes , Análise de Sequência de DNA
13.
Mol Ecol Resour ; 19(3): 711-727, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30779309

RESUMO

Although DNA metabarcoding is an attractive approach for monitoring biodiversity, it is often difficult to detect all the species present in a bulk sample. In particular, sequence recovery for a given species depends on its biomass and mitome copy number as well as the primer set employed for PCR. To examine these variables, we constructed a mock community of terrestrial arthropods comprised of 374 species. We used this community to examine how species recovery was impacted when amplicon pools were constructed in four ways. The first two protocols involved the construction of bulk DNA extracts from different body segments (Bulk Abdomen, Bulk Leg). The other protocols involved the production of DNA extracts from single legs which were then merged prior to PCR (Composite Leg) or PCR-amplified separately (Single Leg) and then pooled. The amplicons generated by these four treatments were then sequenced on three platforms (Illumina MiSeq, Ion Torrent PGM and Ion Torrent S5). The choice of sequencing platform did not substantially influence species recovery, although the Miseq delivered the highest sequence quality. As expected, species recovery was most efficient from the Single Leg treatment because amplicon abundance varied little among taxa. Among the three treatments where PCR occurred after pooling, the Bulk Abdomen treatment produced a more uniform read abundance than the Bulk Leg or Composite Leg treatment. Primer choice also influenced species recovery and evenness. Our results reveal how variation in protocols can have substantial impacts on perceived diversity unless sequencing coverage is sufficient to reach an asymptote.


Assuntos
Artrópodes/classificação , Artrópodes/genética , Código de Barras de DNA Taxonômico/métodos , DNA/isolamento & purificação , Metagenoma , Animais , DNA/química , DNA/genética , Modelos Teóricos , Análise de Sequência de DNA
14.
Sci Rep ; 8(1): 10999, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30030475

RESUMO

It is well understood that homopolymer regions should be avoided for primer binding to prevent off-target amplification. However, in metabarcoding, it is often difficult to avoid primer degeneracy in order to maximize taxa detection. We here investigate primer binding specificity using different primer sets from several invertebrate metabarcoding studies. Our results indicate that primers frequently bound 1-2 bp upstream in taxa where a homopolymer region was present in the amplification direction. Primer binding 1 bp downstream was observed less frequently. This primer slippage leads to taxon-specific length variation in amplicons and subsequent length variation in recovered sequences. Some widely used primer sets were severely affected by this bias, while others were not. While this variation will only have small impacts on the designation of Operational Taxonomic Units (OTUs) by clustering algorithms that ignore terminal gaps, primer sets employed in metabarcoding projects should be evaluated for their sensitivity to slippage. Moreover, steps should be taken to reduce slippage by improving protocols for primer design. For example, the flanking region adjacent to the 3' end of the primer is not considered by current primer development software although GC clamps in this position could mitigate slippage.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Primers do DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Animais , Sequência de Bases , Biodiversidade , Biologia Computacional , Conjuntos de Dados como Assunto , Invertebrados/genética
15.
Sci Total Environ ; 633: 1287-1301, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29758882

RESUMO

Stream ecosystems are affected by multiple anthropogenic stressors worldwide. Even though effects of many single stressors are comparatively well studied, the effects of multiple stressors are difficult to predict. In particular bacteria and protists, which are responsible for the majority of ecosystem respiration and element flows, are infrequently studied with respect to multiple stressors responses. We conducted a stream mesocosm experiment to characterize the responses of single and multiple stressors on microbiota. Two functionally important stream habitats, leaf litter and benthic phototrophic rock biofilms, were exposed to three stressors in a full factorial design: fine sediment deposition, increased chloride concentration (salinization) and reduced flow velocity. We analyzed the microbial composition in the two habitat types of the mesocosms using an amplicon sequencing approach. Community analysis on different taxonomic levels as well as principle component analyses (PCoAs) based on realtive abundances of operational taxonomic units (OTUs) showed treatment specific shifts in the eukaryotic biofilm community. Analysis of variance (ANOVA) revealed that Bacillariophyta responded positively salinity and sediment increase, while the relative read abundance of chlorophyte taxa decreased. The combined effects of multiple stressors were mainly antagonistic. Therefore, the community composition in multiply stressed environments resembled the composition of the unstressed control community in terms of OTU occurrence and relative abundances.


Assuntos
Ecossistema , Monitoramento Ambiental , Rios/microbiologia , Microbiologia da Água , Biofilmes , Sedimentos Geológicos/microbiologia , Microbiota , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
16.
PeerJ ; 6: e4644, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29666773

RESUMO

BACKGROUND: DNA metabarcoding is used to generate species composition data for entire communities. However, sequencing errors in high-throughput sequencing instruments are fairly common, usually requiring reads to be clustered into operational taxonomic units (OTUs), losing information on intraspecific diversity in the process. While Cytochrome c oxidase subunit I (COI) haplotype information is limited in resolving intraspecific diversity it is nevertheless often useful e.g. in a phylogeographic context, helping to formulate hypotheses on taxon distribution and dispersal. METHODS: This study combines sequence denoising strategies, normally applied in microbial research, with additional abundance-based filtering to extract haplotype information from freshwater macroinvertebrate metabarcoding datasets. This novel approach was added to the R package "JAMP" and can be applied to COI amplicon datasets. We tested our haplotyping method by sequencing (i) a single-species mock community composed of 31 individuals with 15 different haplotypes spanning three orders of magnitude in biomass and (ii) 18 monitoring samples each amplified with four different primer sets and two PCR replicates. RESULTS: We detected all 15 haplotypes of the single specimens in the mock community with relaxed filtering and denoising settings. However, up to 480 additional unexpected haplotypes remained in both replicates. Rigorous filtering removes most unexpected haplotypes, but also can discard expected haplotypes mainly from the small specimens. In the monitoring samples, the different primer sets detected 177-200 OTUs, each containing an average of 2.40-3.30 haplotypes per OTU. The derived intraspecific diversity data showed population structures that were consistent between replicates and similar between primer pairs but resolution depended on the primer length. A closer look at abundant taxa in the dataset revealed various population genetic patterns, e.g. the stonefly Taeniopteryx nebulosa and the caddisfly Hydropsyche pellucidula showed a distinct north-south cline with respect to haplotype distribution, while the beetle Oulimnius tuberculatus and the isopod Asellus aquaticus displayed no clear population pattern but differed in genetic diversity. DISCUSSION: We developed a strategy to infer intraspecific genetic diversity from bulk invertebrate metabarcoding data. It needs to be stressed that at this point this metabarcoding-informed haplotyping is not capable of capturing the full diversity present in such samples, due to variation in specimen size, primer bias and loss of sequence variants with low abundance. Nevertheless, for a high number of species intraspecific diversity was recovered, identifying potentially isolated populations and taxa for further more detailed phylogeographic investigation. While we are currently lacking large-scale metabarcoding datasets to fully take advantage of our new approach, metabarcoding-informed haplotyping holds great promise for biomonitoring efforts that not only seek information about species diversity but also underlying genetic diversity.

17.
Sci Total Environ ; 610-611: 961-971, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28830056

RESUMO

Stream ecosystems are impacted by multiple stressors worldwide. Recent studies have shown that the effects of multiple stressors are often complex and difficult to predict based on the effects of single stressors. More research is needed to understand stressor impacts on stream communities and to design appropriate counteractions. We carried out an outdoor mesocosm experiment to assess single and interactive multiple-stressor effects on stream macroinvertebrates in a setup with controlled application of three globally important stressors, namely, reduced stream flow velocity, deposition of fine sediment and increased chloride concentration in a full-factorial design. Each mesocosm comprised three compartments (channel substratum, leaf litter bag and drift net) that were individually analyzed and also compared. We identified 102,501 specimens in total (mainly to family level), 36.5% of which were found in the substratum, 60.6% in litter bags and 2.9% in the drift. Added fine sediment and reduced flow velocity had strong negative single-stressor effects on the abundances of EPT taxa, i.e. Ephemeroptera (mayflies), Plecoptera (stoneflies) and Trichoptera (caddisflies), and a positive effect on chironomid abundances in the substratum. Increased salt concentration reduced abundances of Ephemeroptera. Chironomids migrated from litter bag to channel substratum when water velocity was reduced and Leptophlebiidae in the opposite direction when sediment was added. All three stressors caused higher drift propensities, especially added fine sediment. Both additive and complex multiple-stressor effects were common. A complex three-way interaction affected EPT richness in the substratum, demonstrating the need to evaluate higher-order interactions for more than two stressors. Our results add further evidence that multiple-stressor interactions, notably increased salinity with other stressors, affect a variety of invertebrate taxa across different habitats of stream communities. The results have direct implications for water management as they highlight the need to re-evaluate defined salinity thresholds in the context of multiple-stressor interactions.


Assuntos
Sedimentos Geológicos , Insetos , Rios , Salinidade , Movimentos da Água , Animais , Cloretos/química , Ecossistema , Monitoramento Ambiental , Estresse Fisiológico
18.
Ecol Evol ; 7(17): 6918-6926, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28904771

RESUMO

Environmental bulk samples often contain many different taxa that vary several orders of magnitude in biomass. This can be problematic in DNA metabarcoding and metagenomic high-throughput sequencing approaches, as large specimens contribute disproportionately high amounts of DNA template. Thus, a few specimens of high biomass will dominate the dataset, potentially leading to smaller specimens remaining undetected. Sorting of samples by specimen size (as a proxy for biomass) and balancing the amounts of tissue used per size fraction should improve detection rates, but this approach has not been systematically tested. Here, we explored the effects of size sorting on taxa detection using two freshwater macroinvertebrate bulk samples, collected from a low-mountain stream in Germany. Specimens were morphologically identified and sorted into three size classes (body size < 2.5 × 5, 5 × 10, and up to 10 × 20 mm). Tissue powder from each size category was extracted individually and pooled based on tissue weight to simulate samples that were not sorted by biomass ("Unsorted"). Additionally, size fractions were pooled so that each specimen contributed approximately equal amounts of biomass ("Sorted"). Mock samples were amplified using four different DNA metabarcoding primer sets targeting the Cytochrome c oxidase I (COI) gene. Sorting taxa by size and pooling them proportionately according to their abundance lead to a more equal amplification of taxa compared to the processing of complete samples without sorting. The sorted samples recovered 30% more taxa than the unsorted samples at the same sequencing depth. Our results imply that sequencing depth can be decreased approximately fivefold when sorting the samples into three size classes and pooling by specimen abundance. Even coarse size sorting can substantially improve taxa detection using DNA metabarcoding. While high-throughput sequencing will become more accessible and cheaper within the next years, sorting bulk samples by specimen biomass or size is a simple yet efficient method to reduce current sequencing costs.

19.
PeerJ ; 4: e1966, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27114891

RESUMO

Cytochrome c oxidase I (COI) is a powerful marker for DNA barcoding of animals, with good taxonomic resolution and a large reference database. However, when used for DNA metabarcoding, estimation of taxa abundances and species detection are limited due to primer bias caused by highly variable primer binding sites across the COI gene. Therefore, we explored the ability of the 16S ribosomal DNA gene as an alternative metabarcoding marker for species level assessments. Ten bulk samples, each containing equal amounts of tissue from 52 freshwater invertebrate taxa, were sequenced with the Illumina NextSeq 500 system. The 16S primers amplified three more insect species than the Folmer COI primers and amplified more equally, probably due to decreased primer bias. Estimation of biomass might be less biased with 16S than with COI, although variation in read abundances of two orders of magnitudes is still observed. According to these results, the marker choice depends on the scientific question. If the goal is to obtain a taxonomic identification at the species level, then COI is more appropriate due to established reference databases and known taxonomic resolution of this marker, knowing that a greater proportion of insects will be missed using COI Folmer primers. If the goal is to obtain a more comprehensive survey the 16S marker, which requires building a local reference database, or optimised degenerated COI primers could be more appropriate.

20.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(5): 3365-6, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-25799349

RESUMO

We assembled the mitochondrial genome of the capniid stonefly Mesocapnia arizonensis (Baumann & Gaufin, 1969) using Illumina HiSeq sequence data. The recovered mitogenome is 14,921 bp in length and includes 13 protein-coding genes, 2 ribosomal RNA genes and 22 transfer RNA genes. The control region could only be assembled partially. Gene order resembles that of basal arthropods. This is the first partial mitogenome sequence for the stonefly superfamily group Euholognatha and will be useful in future phylogenetic analyses.


Assuntos
Genoma Mitocondrial , Insetos/genética , Animais , Composição de Bases , Códon , Biologia Computacional/métodos , Genes Mitocondriais , Tamanho do Genoma , Insetos/classificação , Fases de Leitura Aberta , Sequências Reguladoras de Ácido Nucleico , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...