Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 5(8): 2261-2270, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37056625

RESUMO

Chronic wounds are characterized by a prolonged inflammation phase preventing the normal processes of wound healing and natural regeneration of the skin. To tackle this issue, electrospun nanofibers, inherently possessing a high surface-to-volume ratio and high porosity, are promising candidates for the design of anti-inflammatory drug delivery systems. In this study, we evaluated the ability of poly(ethylene-co-vinyl alcohol) nanofibers of various chemical compositions to release ibuprofen for the potential treatment of chronic wounds. First, the electrospinning of poly(ethylene-co-vinyl alcohol) copolymers with different ethylene contents (32, 38 and 44 mol%) was optimized in DMSO. The morphology and surface properties of the membranes were investigated via state-of-the-art techniques and the influence of the ethylene content on the mechanical and thermal properties of each membrane was evaluated. Furthermore, the release kinetics of ibuprofen from the nanofibers in a physiological temperature range revealed that more ibuprofen was released at 37.5 °C than at 25 °C regardless of the ethylene content. Additionally, at 25 °C less drug was released when the ethylene content of the membranes increased. Finally, the scaffolds showed no cytotoxicity to normal human fibroblasts collectively paving the way for the design of electrospun based patches for the treatment of chronic wounds.

2.
Mater Today Bio ; 15: 100303, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35655805

RESUMO

Titanium-based dental implants have been highly optimized to enhance osseointegration, but little attention has been given to the soft tissue-implant interface, despite being a major contributor to long term implant stability. This is strongly linked to a lack of model systems that enable the reliable evaluation of soft tissue-implant interactions. Current in vitro platforms to assess these interactions are very simplistic, thus suffering from limited biological relevance and sensitivity to varying implant surface properties. The aim of this study was to investigate how blood-implant interactions affect downstream responses of different soft tissue cells to implants in vitro, thus taking into account not only the early events of blood coagulation upon implantation, but also the multicellular nature of soft tissue. For this, three surfaces (smooth and hydrophobic; rough and hydrophobic; rough and hydrophilic with nanostructures), which reflect a wide range of implant surface properties, were used to study blood-material interactions as well as cell-material interactions in the presence and absence of blood. Rough surfaces stimulated denser fibrin network formation compared to smooth surfaces and hydrophilicity accelerated the rate of blood coagulation compared to hydrophobic surfaces. In the absence of blood, smooth surfaces supported enhanced attachment of human gingival fibroblasts and keratinocytes, but limited changes in gene expression and cytokine production were observed between surfaces. In the presence of blood, rough surfaces supported enhanced fibroblast attachment and stimulated a stronger anti-inflammatory response from macrophage-like cells than smooth surfaces, but only smooth surfaces were capable of supporting long-term keratinocyte attachment and formation of a layer of epithelial cells. These findings indicate that surface properties not only govern blood-implant interactions, but that this can in turn also significantly modulate subsequent soft tissue cell-implant interactions.

3.
Sci Rep ; 7: 42495, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28195152

RESUMO

In the cell culture environment macrophages are highly adherent cells. Currently used methods to harvest macrophages have the disadvantage of reducing cell viability and their ability to re-attach after seeding. Although thermo-responsive surfaces have been employed to harvest cell sheets no reports are available to use these to harvest (pre-polarized) macrophages. We show that this method significantly improves the yield of living macrophages and percentage of subsequent cell reattachment, whilst having a minimal effect on the cell phenotype.

4.
Nanomedicine ; 10(5): 1041-51, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24412472

RESUMO

Poly (l-lactide)'s (PLLA) biodegradable properties are of special value in orthopaedic applications, but its mechanical strength limits its usage. To overcome this PLLA can be reinforced by multiwall carbon nanotubes (MWCNT). In this study the PLLA and MWCNT were combined to prepare nanostructured composites (nanocomposite) at 0, 0.1, 0.5 and 1wt.% reinforcement. The in vitro biocompatibility of these PLLA/MWCNT nanocomposites was evaluated taking into account the various stages of implantation including nanocomposite degradation. PLLA/MWCNT nanocomposites were highly biocompatible with human bone marrow stromal cells (HBMC). The potential surface degradation product, MWCNT, did not induce toxic responses on HBMC. However, the combination of MWCNT with lactic acid, resembling release after bulk degradation, significantly inhibited HBMC proliferation and activity. This study demonstrates the importance of comprehensive evaluations of novel materials for medical applications in predicting possible adverse effects during nanocomposite degradation. FROM THE CLINICAL EDITOR: This study scrutinizes the cytocompatibility of poly-L-lactide reinforced by multiwall carbon nanotubes, and concludes that the combination of MWCNT with lactic acid significantly inhibited human bone marrow stromal cell proliferation and activity, highlighting the importance of comprehensive evaluations of novel materials.


Assuntos
Materiais Biocompatíveis/efeitos adversos , Materiais Biocompatíveis/química , Nanotubos de Carbono/efeitos adversos , Nanotubos de Carbono/química , Poliésteres/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...