Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 33(4): e4955, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501487

RESUMO

Structure and functions of S100 proteins are regulated by two distinct calcium binding EF hand motifs. In this work, we used solution-state NMR spectroscopy to investigate the cooperativity between the two calcium binding sites and map the allosteric changes at the target binding site. To parse the contribution of the individual calcium binding events, variants of S100A12 were designed to selectively bind calcium to either the EF-I (N63A) or EF-II (E31A) loop, respectively. Detailed analysis of the backbone chemical shifts for wildtype protein and its mutants indicates that calcium binding to the canonical EF-II loop is the principal trigger for the conformational switch between 'closed' apo to the 'open' Ca2+ -bound conformation of the protein. Elimination of binding in S100-specific EF-I loop has limited impact on the calcium binding affinity of the EF-II loop and the concomitant structural rearrangement. In contrast, deletion of binding in the EF-II loop significantly attenuates calcium affinity in the EF-I loop and the structure adopts a 'closed' apo-like conformation. Analysis of experimental amide nitrogen (15 N) relaxation rates (R1 , R2 , and 15 N-{1 H} NOE) and molecular dynamics (MD) simulations demonstrate that the calcium bound state is relatively floppy with pico-nanosecond motions induced in functionally relevant domains responsible for target recognition such as the hinge domain and the C-terminal residues. Experimental relaxation studies combined with MD simulations show that while calcium binding in the EF-I loop alone does not induce significant motions in the polypeptide chain, EF-I regulates fluctuations in the polypeptide in the presence of bound calcium in the EF-II loop. These results offer novel insights into the dynamic regulation of target recognition by calcium binding and unravels the role of cooperativity between the two calcium binding events in S100A12.


Assuntos
Proteínas S100 , Proteína S100A12 , Proteínas S100/química , Proteína S100A12/metabolismo , Cálcio/metabolismo , Conformação Proteica , Proteínas de Ligação ao Cálcio/química , Motivos EF Hand , Peptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...