Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Metab ; 8: 17, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695336

RESUMO

BACKGROUND: ErbB2 breast cancer still remains an unmet need due to primary and/or acquired resistance to current treatment strategies. MEDICA compounds consist of synthetic long-chain α,ω-dicarboxylic acids previously reported to suppress breast cancer in PyMT transgenic mice. METHODS: MEDICA efficacy and mode of action in the ErbB2 context was studied in ErbB2 transgenic mice and human breast cancer cells. RESULTS: MEDICA treatment is shown here to suppress ErbB2 breast tumors and lung metastasis in ErbB2/neu MMTV transgenic mice, to suppress ErbB2/neu xenografts in nod/scid mice, and to suppress survival of AU565 and BT474 human ErbB2 breast cancer cells. Suppression of ErbB2 breast tumors by MEDICA is due to lipid raft disruption with loss of ErbB family members, including EGFR, ErbB2, and ErbB3. In addition, MEDICA inhibits mTORC1 activity, independently of abrogating the ErbB receptors and their signaling cascades. The double hit of MEDICA in abrogating ErbB and mTORC1 is partly accounted for by targeting mitochondria complex I. CONCLUSIONS: Mitochondrial targeting by MEDICA suppresses ErbB2 breast tumors and metastasis due to lipid raft disruption and inhibition of mTORC1 activity. Inhibition of mTORC1 activity by MEDICA avoids the resistance acquired by canonical mTORC1 inhibitors like rapalogs or mTOR kinase inhibitors.

2.
Oncotarget ; 7(14): 18694-704, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26959890

RESUMO

B-Raf(V600E) activates MEK/MAPK signalling and acts as oncogenic driver of a variety of cancers, including melanoma, colorectal and papillary thyroid carcinoma. Specific B-Raf(V600E) kinase inhibitors (e.g., Vemurafenib) prove initial efficacy in melanoma followed shortly by acquired resistance, while failing in most other B-Raf(V600E) cancers due to primary resistance. Resistance is due to acquired mutations in the Ras/Raf/MEK/MAPK pathway and/or other oncogenic drivers that bypass B-Raf(V600E). Surprisingly, hyper-activation of MAPK by inhibiting its protein phosphatase 2A by a synthetic long-chain fatty acid analogue (MEDICA), results in oncogene-induced growth arrest and apoptosis of B-Raf(V600E) cancer cells. Growth arrest is accompanied by MAPK-mediated serine/threonine phosphorylation and suppression of a variety of oncogenic drivers that resist treatment by B-Raf(V600E) kinase inhibitors, including ErbB members, c-Met, IGFR, IRS, STAT3 and Akt. The combined activities of mutated B-Raf and MEDICA are required for generating hyper-activated MAPK, growth arrest and apoptosis, implying strict specificity for mutated B-Raf cancer cells.


Assuntos
Carcinoma/enzimologia , Neoplasias Colorretais/enzimologia , Sistema de Sinalização das MAP Quinases , Melanoma/enzimologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Neoplasias da Glândula Tireoide/enzimologia , Carcinoma/patologia , Carcinoma Papilar , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Neoplasias Colorretais/patologia , Células HT29 , Humanos , Melanoma/patologia , Ácidos Palmíticos/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide/patologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...