Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurochem Res ; 42(11): 3220-3232, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28770436

RESUMO

Although antiretroviral (ARV) therapy has reduced the incidence of severe dementia associated with HIV infection, there has been a rise in milder neurocognitive complaints. Data from HIV patients taking ARVs have shown measurable neurocognitive improvements during drug cessation, suggesting a neurotoxic role of the therapy itself. Mechanisms underlying potential ARV neurotoxicity have not been thoroughly investigated, however pathologic oxidative stress and mitochondrial dysfunction have been suspected. Using DIV 16 primary rat cortical neuron culture, we tested eight ARVs from the three most commonly prescribed ARV classes: nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs/NtRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), and protease inhibitors (PIs) for effects on neuron viability and morphology after 24 h of drug exposure. Of the tested NRTIs, only stavudine at nearly 100 times the target plasma concentration affected neuron viability with no appreciable change in morphology. Dideoxyinosine induced dendritic simplification at 100 times target plasma concentrations, but did not adversely affect viability. The sole NtRTI, tenofovir, induced dendritic simplification at approximately 3-4 times target plasma concentration, but did not affect viability. Of the tested PIs, only amprenavir decreased neuron viability at nearly 100 times the target plasma concentration. The non-nucleoside reverse transcriptase inhibitor, efavirenz, consistently reduced viability (at 50 µM) and induced dendritic simplification (at 20 µM) nearest the target plasma concentration. Probing mitochondrial energetics of DIV16 cortical neurons after exposure to 20 µM efavirenz showed rapid diminution of mitochondrial-dependent oxygen consumption. Further, 20 µM efavirenz decreased excitability in ex vivo slice culture whereas 2 µM had no effect.


Assuntos
Fármacos Anti-HIV/toxicidade , Antirretrovirais/toxicidade , Benzoxazinas/toxicidade , Inibidores da Transcriptase Reversa/toxicidade , Alcinos , Animais , Animais Recém-Nascidos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Ciclopropanos , Relação Dose-Resposta a Droga , Masculino , Neurônios/efeitos dos fármacos , Neurônios/patologia , Ratos , Ratos Sprague-Dawley
2.
J Neurophysiol ; 117(1): 93-103, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27733592

RESUMO

Antibiotics are used in the treatment and prevention of bacterial infections, but effects on neuron excitability have been documented. A recent study demonstrated that clarithromycin alleviates daytime sleepiness in hypersomnia patients (Trotti LM, Saini P, Freeman AA, Bliwise DL, García PS, Jenkins A, Rye DB. J Psychopharmacol 28: 697-702, 2014). To explore the potential application of clarithromycin as a stimulant, we performed whole cell patch-clamp recordings in rat pyramidal cells from the CA3 region of hippocampus. In the presence of the antibiotic, rheobase current was reduced by 50%, F-I relationship (number of action potentials as a function of injected current) was shifted to the left, and the resting membrane potential was more depolarized. Clarithromycin-induced hyperexcitability was dose dependent; doses of 30 and 300 µM clarithromycin significantly increased the firing frequency and membrane potential compared with controls (P = 0.003, P < 0.0001). We hypothesized that clarithromycin enhanced excitability by reducing GABAA receptor activation. Clarithromycin at 30 µM significantly reduced (P = 0.001) the amplitude of spontaneous miniature inhibitory GABAergic currents and at 300 µM had a minor effect on action potential width. Additionally, we tested the effect of clarithromycin in an ex vivo seizure model by evaluating its effect on spontaneous local field potentials. Bath application of 300 µM clarithromycin enhanced burst frequency twofold compared with controls (P = 0.0006). Taken together, these results suggest that blocking GABAergic signaling with clarithromycin increases cellular excitability and potentially serves as a stimulant, facilitating emergence from anesthesia or normalizing vigilance in hypersomnia and narcolepsy. However, the administration of clarithromycin should be carefully considered in patients with seizure disorders. NEW & NOTEWORTHY: Clinical administration of the macrolide antibiotic clarithromycin has been associated with side effects such as mania, agitation, and delirium. Here, we investigated the adverse effects of this antibiotic on CA3 pyramidal cell excitability. Clarithromycin induces hyperexcitability in single neurons and is related to a reduction in GABAergic signaling. Our results support a potentially new application of clarithromycin as a stimulant to facilitate emergence from anesthesia or to normalize vigilance.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Região CA3 Hipocampal/citologia , Claritromicina/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Células Piramidais/efeitos dos fármacos , Receptores de GABA/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Biofísica , Relação Dose-Resposta a Droga , Estimulação Elétrica , Feminino , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Masculino , Neurotransmissores/farmacologia , Técnicas de Patch-Clamp , Células Piramidais/fisiologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...