Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem Toxicol ; 182: 114193, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37980979

RESUMO

Tartrazine (E102, FD&C Yellow 5) is a vibrant yellow azo dye added to many processed foods. The safety of this ubiquitous chemical has not been fully elucidated, and it has been linked to allergic reactions and ADHD in some individuals. In our study, bacterial species isolated from human stool decolourised tartrazine and, upon exposure to air, a purple compound formed. Tartrazine is known to undergo reduction in the gut to sulfanilic acid and 4-amino-3-carboxy-5-hydroxy-1-(4-sulfophenyl)pyrazole (SCAP). These metabolites and their derivatives are relevant to the toxicology of tartrazine. The toxicity of sulfanilic acid has been studied before, but the oxidative instability of SCAP has previously prevented full characterisation. We have verified the chemical identity of SCAP and confirmed that the purple-coloured oxidation derivative is 4-(3-carboxy-5-hydroxy-1-(4-sulfophenyl)-1H-pyrazol-4-yl)imino-5-oxo-1-(4-sulfophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylic acid (purpurazoic acid, PPA), as proposed by Westöö in 1965. A yellow derivative of SCAP is proposed to be the hydrolysed oxidation product, 4,5-dioxo-1-(4-sulfophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylic acid. SCAP and PPA are moderately toxic to human cells (IC50 89 and 78 µM against HEK-293, respectively), but had no apparent effect on Escherichia coli and Bacillus subtilis bacteria. These results prompt further analyses of the toxicology of tartrazine and its derivatives.


Assuntos
Compostos Azo , Tartrazina , Humanos , Tartrazina/toxicidade , Tartrazina/química , Compostos Azo/toxicidade , Células HEK293 , Oxirredução , Ácidos Carboxílicos , Pirazóis
2.
Anaerobe ; 83: 102783, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37769703

RESUMO

OBJECTIVES: We set out to survey the capacities of bacterial isolates from the human gut microbiome to reduce common azo food dyes in vitro. METHODS: A total of 206 strains representative of 124 bacterial species and 6 phyla were screened in vitro using a simple azo dye decolorization assay. Strains which showed azoreductive activity were characterized by studies of azoreduction kinetics and bacterial growth. RESULTS: Several groups of gut bacteria, including ones not previously associated with azoreduction, reduced one or more of the four azo food dyes commonly used in Canada: Allura Red, Amaranth, Sunset Yellow, and Tartrazine. Strains within some species differed in their azoreductive capabilities. Some strains displayed evidence of effects on growth related to the presence of azo dyes and/or the products of their azoreduction. CONCLUSION: The continued widespread use of food azo dyes requires re-evaluation in light of the potential for disturbance of the gut microbial ecosystem resulting from azoreduction and the possibility of consequences for human health.


Assuntos
Microbioma Gastrointestinal , Humanos , Ecossistema , Compostos Azo/metabolismo , Bactérias/metabolismo , Corantes/metabolismo
3.
Annu Rev Microbiol ; 75: 49-69, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34038159

RESUMO

The human gut microbiota is a complex community of prokaryotic and eukaryotic microbes and viral particles that is increasingly associated with many aspects of host physiology and health. However, the classical microbiology approach of axenic culture cannot provide a complete picture of the complex interactions between microbes and their hosts in vivo. As such, recently there has been much interest in the culture of gut microbial ecosystems in the laboratory as a strategy to better understand their compositions and functions. In this review, we discuss the model platforms and methods available in the contemporary microbiology laboratory to study human gut microbiomes, as well as current knowledge surrounding the isolation of human gut microbes for the potential construction of defined communities for use in model systems.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...