Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 24(10): 4738-4754, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36054324

RESUMO

Erwinia amylovora, the causative agent of fire blight, uses flagella-based motilities to translocate to host plant natural openings; however, little is known about how this bacterium migrates systemically in the apoplast. Here, we reveal a novel surface motility mechanism, defined as sliding, in E. amylovora. Deletion of flagella assembly genes did not affect this movement, whereas deletion of biosynthesis genes for the exopolysaccharides (EPSs) amylovoran and levan resulted in non-sliding phenotypes. Since EPS production generates osmotic pressure that potentially powers sliding, we validated this mechanism by demonstrating that water potential positively contributes to sliding. In addition, no sliding was observed when the water potential of the surface was lower than -0.5 MPa. Sliding is a passive motility mechanism. We further show that the force of gravity plays a critical role in directing E. amylovora sliding on unconfined surfaces but has a negligible effect when cells are sliding in confined microcapillaries, in which EPS-dependent osmotic pressure acts as the main force. Although amylovoran and levan are both required for sliding, we demonstrate that they exhibit different roles in bacterial communities. In summary, our study provides fundamental knowledge for a better understanding of mechanisms that drive bacterial sliding motility.


Assuntos
Erwinia amylovora , Proteínas de Bactérias/genética , Erwinia amylovora/genética , Frutanos , Doenças das Plantas/microbiologia , Polissacarídeos Bacterianos , Virulência , Água
2.
Appl Environ Microbiol ; 88(9): e0023922, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35416685

RESUMO

Erwinia amylovora is a plant-pathogenic bacterium that causes fire blight disease in many economically important plants, including apples and pears. This bacterium produces three exopolysaccharides (EPSs), amylovoran, levan, and cellulose, and forms biofilms in host plant vascular tissues, which are crucial for pathogenesis. Here, we demonstrate that ProQ, a conserved bacterial RNA chaperone, was required for the virulence of E. amylovora in apple shoots and for biofilm formation in planta. In vitro experiments revealed that the deletion of proQ increased the production of amylovoran and cellulose. Prc is a putative periplasmic protease, and the prc gene is located adjacent to proQ. We found that Prc and the associated lipoprotein NlpI negatively affected amylovoran production, whereas Spr, a peptidoglycan hydrolase degraded by Prc, positively regulated amylovoran. Since the prc promoter is likely located within proQ, our data showed that proQ deletion significantly reduced the prc mRNA levels. We used a genome-wide transposon mutagenesis experiment to uncover the involvement of the bacterial second messenger c-di-GMP in ProQ-mediated cellulose production. The deletion of proQ resulted in elevated intracellular c-di-GMP levels and cellulose production, which were restored to wild-type levels by deleting genes encoding c-di-GMP biosynthesis enzymes. Moreover, ProQ positively affected the mRNA levels of genes encoding c-di-GMP-degrading phosphodiesterase enzymes via a mechanism independent of mRNA decay. In summary, our study revealed a detailed function of E. amylovora ProQ in coordinating cellulose biosynthesis and, for the first time, linked ProQ with c-di-GMP metabolism and also uncovered a role of Prc in the regulation of amylovoran production. IMPORTANCE Fire blight, caused by the bacterium Erwinia amylovora, is an important disease affecting many rosaceous plants, including apple and pear, that can lead to devastating economic losses worldwide. Similar to many xylem-invading pathogens, E. amylovora forms biofilms that rely on the production of exopolysaccharides (EPSs). In this paper, we identified the RNA-binding protein ProQ as an important virulence regulator. ProQ played a central role in controlling the production of EPSs and participated in the regulation of several conserved bacterial signal transduction pathways, including the second messenger c-di-GMP and the periplasmic protease Prc-mediated systems. Since ProQ has recently been recognized as a global posttranscriptional regulator in many bacteria, these findings provide new insights into multitiered regulatory mechanisms for the precise control of virulence factor production in bacterial pathogens.


Assuntos
Erwinia amylovora , Malus , Pyrus , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Celulose/metabolismo , Erwinia amylovora/metabolismo , Malus/microbiologia , Peptídeo Hidrolases/metabolismo , Doenças das Plantas/microbiologia , Pyrus/microbiologia , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sistemas do Segundo Mensageiro
3.
Plant Dis ; 105(4): 958-964, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32886041

RESUMO

Resistance to sterol demethylation inhibitor (DMI) fungicides in Monilinia fructicola, causal agent of brown rot of stone fruit, has been reported in the southeastern and eastern United States and in Brazil. DMI resistance of some M. fructicola isolates, in particular those recovered from the southeastern United States, is associated with a sequence element termed "Mona" that causes overexpression of the cytochrome demethylase target gene MfCYP51. In this study, we conducted statewide surveys of Michigan stone fruit orchards from 2009 to 2011 and in 2019, and we determined the sensitivity to propiconazole of a total of 813 isolates of M. fructicola. A total of 80.7% of Michigan isolates were characterized as resistant to propiconazole by relative growth assays, but the Mona insert was not uniformly detected and was present in some isolates that were not characterized as DMI resistant. Gene expression assays indicated that elevated expression of MfCYP51 was only weakly correlated with DMI resistance in M. fructicola isolates from Michigan, and there was no obvious correlation between the presence of the Mona element and elevated expression of MfCYP51. However, sequence analysis of MfCYP51 from 25 DMI-resistant isolates did not reveal any point mutations that could be correlated with resistance. Amplification and sequencing upstream of MfCYP51 resulted in detection of DNA insertions in a wide range of isolates typed by DMI phenotype and the presence of Mona or other unique sequences. The function of these unique sequences or their presence upstream of MfCYP51 cannot be correlated to a DMI-resistant genotype at this time. Our results indicate that DMI resistance was established in Michigan populations of M. fructicola by 2009 to 2011, and that relative resistance levels have continued to increase to the point that practical resistance is present in most orchards. In addition, the presence of the Mona insert is not a marker for identifying DMI-resistant isolates of M. fructicola in Michigan.


Assuntos
Fungicidas Industriais , Ascomicetos , Brasil , Desmetilação , Farmacorresistência Fúngica/genética , Fungicidas Industriais/farmacologia , Michigan , Sudeste dos Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...