Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 112(9): 091302, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24655238

RESUMO

The CERN Axion Solar Telescope has finished its search for solar axions with (3)He buffer gas, covering the search range 0.64 eV ≲ ma ≲ 1.17 eV. This closes the gap to the cosmological hot dark matter limit and actually overlaps with it. From the absence of excess x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of gaγ ≲ 3.3 × 10(-10) GeV(-1) at 95% C.L., with the exact value depending on the pressure setting. Future direct solar axion searches will focus on increasing the sensitivity to smaller values of gaγ, for example by the currently discussed next generation helioscope International AXion Observatory.

2.
Phys Rev Lett ; 110(2): 022501, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23383895

RESUMO

The 63Ni(n,γ) cross section has been measured for the first time at the neutron time-of-flight facility n_TOF at CERN from thermal neutron energies up to 200 keV. In total, capture kernels of 12 (new) resonances were determined. Maxwellian averaged cross sections were calculated for thermal energies from kT=5-100 keV with uncertainties around 20%. Stellar model calculations for a 25M⊙ star show that the new data have a significant effect on the s-process production of 63Cu, 64Ni, and 64Zn in massive stars, allowing stronger constraints on the Cu yields from explosive nucleosynthesis in the subsequent supernova.

3.
Phys Rev Lett ; 107(26): 261302, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22243149

RESUMO

The CERN Axion Solar Telescope (CAST) has extended its search for solar axions by using (3)He as a buffer gas. At T=1.8 K this allows for larger pressure settings and hence sensitivity to higher axion masses than our previous measurements with (4)He. With about 1 h of data taking at each of 252 different pressure settings we have scanned the axion mass range 0.39 eV≲m(a)≲0.64 eV. From the absence of excess x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of g(aγ)≲2.3×10(-10) GeV(-1) at 95% C.L., the exact value depending on the pressure setting. Kim-Shifman-Vainshtein-Zakharov axions are excluded at the upper end of our mass range, the first time ever for any solar axion search. In the future we will extend our search to m(a)≲1.15 eV, comfortably overlapping with cosmological hot dark matter bounds.

4.
Appl Radiat Isot ; 68(4-5): 643-6, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20096595

RESUMO

In 2002, an innovative neutron time-of-flight facility started operation at CERN: n_TOF. The main characteristics that make the new facility unique are the high instantaneous neutron flux, high resolution and wide energy range. Combined with state-of-the-art detectors and data acquisition system, these features have allowed to collect high accuracy neutron cross-section data on a variety of isotopes, many of which radioactive, of interest for Nuclear Astrophysics and for applications to advanced reactor technologies. A review of the most important results on capture and fission reactions obtained so far at n_TOF is presented, together with plans for new measurements related to nuclear industry.


Assuntos
Terapia por Captura de Nêutron/instrumentação , Terapia por Captura de Nêutron/métodos , Reatores Nucleares , Desenho de Equipamento , Análise de Falha de Equipamento , Nêutrons , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
Phys Rev Lett ; 94(12): 121301, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15903903

RESUMO

Hypothetical axionlike particles with a two-photon interaction would be produced in the sun by the Primakoff process. In a laboratory magnetic field ("axion helioscope"), they would be transformed into x-rays with energies of a few keV. Using a decommissioned Large Hadron Collider test magnet, the CERN Axion Solar Telescope ran for about 6 months during 2003. The first results from the analysis of these data are presented here. No signal above background was observed, implying an upper limit to the axion-photon coupling g(agamma)<1.16x10(-10) GeV-1 at 95% C.L. for m(a) less, similar 0.02 eV. This limit, assumption-free, is comparable to the limit from stellar energy-loss arguments and considerably more restrictive than any previous experiment over a broad range of axion masses.

6.
Radiat Prot Dosimetry ; 101(1-4): 103-6, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12382715

RESUMO

The main purpose of the TARC (Transmutation by Adiabatic Resonance Crossing) experiment (PS-211), was to demonstrate the possibility to destroy efficiently Long-Lived Fission Fragments (LLFF) in Accelerator Driven Systems (ADS). The experimental set-up which consisted of a lead block with dimensions 3.3 x 3.3 x 3 m3, was installed in a CERN Proton Synchrotron (PS) beam line. The proton beam at 2.5 GeV/c and 3.5 GeV/c, was incident in the centre of the lead block assembly producing neutrons via spallation reactions. In this study, neutron flux measurements are presented in the lead block assembly using thermoluminescence and nuclear track detectors. The results are in good agreement with Monte Carlo calculations as well as with the results of the other methods used in the framework of the TARC experiment.


Assuntos
Nêutrons Rápidos , Nêutrons , Dosimetria Termoluminescente/métodos , Fluoretos , Compostos de Lítio , Sensibilidade e Especificidade , Termodinâmica , Dosimetria Termoluminescente/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...