Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(48): 56526-56536, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38014498

RESUMO

Sensitive thermometry or thermography by responding to blackbody radiation is urgently desired in the intelligent information life, including scientific research, medical diagnosis, remote sensing, defense, etc. Even though thermography techniques based on infrared sensing have undergone unprecedented development, the poor compatibility with common optical components and the high diffraction limit impose an impediment to their integration into the established photonic integrated circuit or the realization of high-spatial-resolution and high-thermal-resolution imaging. In this work, we present a sensitive temperature-dependent visible photon detection in Bi-doped MAPbX3 (X = Cl, Br, and I) and employ it for uncooled thermography. Systematic measurements reveal that the Bi dopant introduces trap states in MAPbX3, thermal energy facilitates the carriers jumping from trap states to the conduction band, while the vacancies of trap states ensure the sequential absorption of visible photons with energy less than the band gap. Subsequently, the change of response toward the visible photon is applied to construct the thermograph, and it possesses a specific sensitivity of 2.11% K-1 along temperature variation. As a result, our thermograph presents a temperature resolution of 0.21 nA K-1, a high responsivity of 2.06 mA W-1, and a high detectivity of 2.08 × 109 Jones at room temperature. Furthermore, remote thermal imaging is successfully achieved with our thermograph.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36300824

RESUMO

Narrowband photodetectors (NPDs) with the capability of detecting light within a selective wavelength range are in high demand for numerous emerging applications such as imaging systems, machine vision, and optical communication. Halide perovskite materials have been developed for eliminating the current complex filtering systems in NPDs due to their beneficial properties, while currently NPDs using perovskite materials are limited by hardly fully eliminated short wavelength response, low charge collection efficiency (CCE), complex fabrication process, and so forth. Herein, a series of perovskite single-crystalline heterojunctions (PSCHs) with a structure of Bi-MAPbX3/MAPbY3 are fabricated by liquid phase epitaxy for filter-free narrowband detection. By varying the halide component in the PSCH, the PSCH-based NPDs can realize continuously tunable spectral response range from blue to NIR regions and ultra-narrow full width at half-maximum (FWHM) of <20 nm. Specifically, the PSCH-based NPD with a high CCE under a large electric filed shows a high spectra rejection ratio of >1000, a fast response speed with rise/fall time of ∼160/∼225 µs, and long-term stability more than 3 months in ambient air. This work provides a simple strategy for designing low-cost and high-performance filter-free NPDs with a tunable spectral response.

3.
ACS Appl Mater Interfaces ; 14(22): 25824-25833, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35612489

RESUMO

Dual-mode photodetectors (PDs) have attracted increasing interest owing to their potential optoelectrical applications. However, the widespread use of PDs is still limited by the high cost of epitaxial semiconductors. In contrast, the solution processability and wide spectral tunability of perovskites have led to the development of various inexpensive and high-performance optoelectronic devices. In this study, we develop a high-performance electronically modulated dual-mode PD with near-infrared (NIR) narrowband and visible light broadband detection based on organic-inorganic hybrid methylammonium lead halide perovskite (MAPbX3; MA = CH3NH3 and X = Cl, Br, and I) single crystals with a pnp configuration. The operating mode of the dual-mode PD can be switched according to voltage bias polarity because the photon absorption region and carrier transport performance are tuned at different bias voltages. The dual-mode PD exhibits a NIR light responsivity of 0.244 A/W and a narrow full width at half-maximum of ∼12 nm at 820 nm at positive voltages and an average visible light responsivity of ∼0.13 A/W at negative voltages. The detectivities of both modes are high (∼1012 Jones), and the linear dynamic range is wide (>100 dB). Our study provides a new method for fabricating multifunctional PDs and can expand their application in integrated imaging systems.

4.
Front Chem ; 8: 791, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33134261

RESUMO

Introducing hole/electron transporting and blocking layers is considered to enhance the performance of electronic devices based on organic-inorganic hybrid halide perovskite single crystals (PSCs). In many photodiodes, the hole/electron transporting or blocking materials are spin-coated or thermal-evaporated on PSC to fabricate heterojunctions. However, the heterojunction interfaces due to lattice mismatch between hole/electron, transporting or blocking materials and perovskites easily form traps and cracks, which cause noise and leakage current. Besides, these low-mobility transporting layers increase the difficulty of transporting carriers generated by photons to the electrode; hence, they also increase the response time for photo detection. In the present study, MAPbCl3-MAPbBr2.5Cl0.5 heterojunction interfaces were realized by liquid-phase epitaxy, in which MAPbBr2.5Cl0.5 PSC acts as an active layer and MAPbCl3 PSC acts as a hole blocking layer (HBL). Our PIN photodiodes with epitaxial MAPbCl3 PSC as HBL show better performance in dark current, light responsivity, stability, and response time than the photodiodes with spin-coated organic PCBM as HBL. These results suggest that the heterojunction interface formed between two bulk PSCs with different halide compositions by epitaxy growth is very useful for effectively blocking the injected charges under high external electric field, which could improve the collection of photo-generated carriers and hereby enhance the detection performance of the photodiode. Furthermore, the PIN photodiodes made of PSC with epitaxial HBL show the sensitivities of 7.08 mC Gyair -1 cm-2, 4.04 mC Gyair -1 cm-2, and 2.38 mC Gyair -1 cm-2 for 40-keV, 60-keV, and 80-keV X-ray, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...