Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 15664, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730726

RESUMO

Fluidity, the ability of liquids to flow, is the key property distinguishing liquids from solids. This fluidity is set by the mobile transit atoms moving from one quasi-equilibrium point to the next. The nature of this transit motion is unknown. Here, we show that flow-enabling transits form a dynamically distinct sub-ensemble where atoms move on average faster than the overall system, with a manifestly non-Maxwellian velocity distribution. This is in contrast to solids and gases where no distinction of different ensembles can be made and where the distribution is always Maxwellian. The non-Maxwellian distribution is described by an exponent [Formula: see text] corresponding to high dimensionality of space. This is generally similar to extra synthetic dimensions in topological quantum matter, albeit higher dimensionality in liquids is not integer but is fractional. The dimensionality is close to 4 at melting and exceeds 4 at high temperature. [Formula: see text] has a maximum as a function of temperature and pressure in liquid and supercritical states, returning to its Maxwell value in the solid and gas states.

2.
J Phys Condens Matter ; 32(41): 415703, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32579131

RESUMO

The nature of the amorphous state has been notably difficult to ascertain at the microscopic level. In addition to the fundamental importance of understanding the amorphous state, potential changes to amorphous structures as a result of radiation damage have direct implications for the pressing problem of nuclear waste encapsulation. Here, we develop new methods to identify and quantify the damage produced by high-energy collision cascades that are applicable to amorphous structures and perform large-scale molecular dynamics simulations of high-energy collision cascades in a model zircon system. We find that, whereas the averaged probes of order such as pair distribution function do not indicate structural changes, local coordination analysis shows that the amorphous structure substantially evolves due to radiation damage. Our analysis shows a correlation between the local structural changes and enthalpy. Important implications for the long-term storage of nuclear waste follow from our detection of significant local density inhomogeneities. Although we do not reach the point of convergence where the changes of the amorphous structure saturate, our results imply that the nature of this new converged amorphous state will be of substantial interest in future experimental and modeling work.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...