Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(20)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076446

RESUMO

Carbon nanocomposites present a new class of nanomaterials in which conducting carbon nanoparticles are a small additive to a non-conducting matrix. A typical example of such composites is a polymer matrix doped with carbon nanotubes (CNT). Due to a high aspect ratio of CNTs, inserting rather low quantity of nanotubes (on the level of 0.01%) results in the percolation transition, which causes the enhancement in the conductivity of the material by 10-12 orders of magnitude. Another type of nanocarbon composite is a film produced as a result of reduction of graphene oxide (GO). Such a film is consisted of GO fragments whose conductivity is determined by the degree of reduction. A distinctive peculiarity of both types of nanocomposites relates to the dependence of the conductivity of those materials on the applied voltage. Such a behavior is caused by a non-ideal contact between neighboring carbon nanoparticles incorporated into the composite. The resistance of such a contact depends sharply on the electrical field strength and therefore on the distance between neighboring nanoparticles. Experiments demonstrating non-linear, non-Ohmic behavior of both above-mentioned types of carbon nanocomposites are considered in the present article. There has been a model description presented of such a behavior based on the quasi-classical approach to the problem of electron tunneling through the barrier formed by the electric field. The calculation results correspond qualitatively to the available experimental data.


Assuntos
Grafite/química , Nanocompostos/química , Filtração , Nanotubos de Carbono/química
2.
Eur J Pharm Biopharm ; 87(1): 64-72, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24530427

RESUMO

When nanocarriers are used for drug delivery they can often achieve superior therapeutic outcomes over standard drug formulations. However, concerns about their adverse effects are growing due to the association between exposure to certain nanosized particles and cardiovascular events. Here we examine the impact of intravenously injected drug-free nanocarriers on the cardiovasculature at both the systemic and organ levels. We combine in vivo and in vitro methods to enable monitoring of hemodynamic parameters in conscious rats, assessments of the function of the vessels after sub-chronic systemic exposure to nanocarriers and evaluation of the direct effect of nanocarriers on vascular tone. We demonstrate that nanocarriers can decrease blood pressure and increase heart rate in vivo via various mechanisms. Depending on the type, nanocarriers induce the dilation of the resistance arteries and/or change the responses induced by vasoconstrictor or vasodilator drugs. No direct correlation between physicochemical properties and cardiovascular effects of nanoparticles was observed. The proposed combination of methods empowers the studies of cardiovascular adverse effects of the nanocarriers.


Assuntos
Fenômenos Fisiológicos Cardiovasculares/efeitos dos fármacos , Sistema Cardiovascular/efeitos dos fármacos , Nanopartículas/efeitos adversos , Nanotubos de Carbono/efeitos adversos , Animais , Aorta Torácica/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Técnicas In Vitro , Injeções Intravenosas , Masculino , Nanopartículas/administração & dosagem , Nanopartículas/química , Nanotubos de Carbono/química , Tamanho da Partícula , Ácidos Polimetacrílicos/administração & dosagem , Ácidos Polimetacrílicos/efeitos adversos , Ácidos Polimetacrílicos/química , Porosidade , Ratos Wistar , Silício/administração & dosagem , Silício/efeitos adversos , Silício/química , Propriedades de Superfície , Resistência Vascular/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
3.
Nanomaterials (Basel) ; 3(3): 393-442, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-28348342

RESUMO

Theoretical problems arising in connection with development and operation of electron field emitters on the basis of carbon nanotubes are reviewed. The physical aspects of electron field emission that underlie the unique emission properties of carbon nanotubes (CNTs) are considered. Physical effects and phenomena affecting the emission characteristics of CNT cathodes are analyzed. Effects given particular attention include: the electric field amplification near a CNT tip with taking into account the shape of the tip, the deviation from the vertical orientation of nanotubes and electrical field-induced alignment of those; electric field screening by neighboring nanotubes; statistical spread of the parameters of the individual CNTs comprising the cathode; the thermal effects resulting in degradation of nanotubes during emission. Simultaneous consideration of the above-listed effects permitted the development of the optimization procedure for CNT array in terms of the maximum reachable emission current density. In accordance with this procedure, the optimum inter-tube distance in the array depends on the region of the external voltage applied. The phenomenon of self-misalignment of nanotubes in an array has been predicted and analyzed in terms of the recent experiments performed. A mechanism of degradation of CNT-based electron field emitters has been analyzed consisting of the bombardment of the emitters by ions formed as a result of electron impact ionization of the residual gas molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...