Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38948755

RESUMO

Huntington's disease (HD), due to expansion of a CAG repeat in HTT , is representative of a growing number of disorders involving somatically unstable short tandem repeats. We find that overlapping and distinct genetic modifiers of clinical landmarks and somatic expansion in blood DNA reveal an underlying complexity and cell-type specificity to the mismatch repair-related processes that influence disease timing. Differential capture of non-DNA-repair gene modifiers by multiple measures of cognitive and motor dysfunction argues additionally for cell-type specificity of pathogenic processes. Beyond trans modifiers, differential effects are also illustrated at HTT by a 5'-UTR variant that promotes somatic expansion in blood without influencing clinical HD, while, even after correcting for uninterrupted CAG length, a synonymous sequence change at the end of the CAG repeat dramatically hastens onset of motor signs without increasing somatic expansion. Our findings are directly relevant to therapeutic suppression of somatic expansion in HD and related disorders and provide a route to define the individual neuronal cell types that contribute to different HD clinical phenotypes.

2.
bioRxiv ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38895438

RESUMO

Huntington's disease (HD), one of >50 inherited repeat expansion disorders (Depienne and Mandel, 2021), is a dominantly-inherited neurodegenerative disease caused by a CAG expansion in HTT (The Huntington's Disease Collaborative Research Group, 1993). Inherited CAG repeat length is the primary determinant of age of onset, with human genetic studies underscoring that the property driving disease is the CAG length-dependent propensity of the repeat to further expand in brain (Swami et al ., 2009; GeM-HD, 2015; Hensman Moss et al ., 2017; Ciosi et al ., 2019; GeM-HD, 2019; Hong et al ., 2021). Routes to slowing somatic CAG expansion therefore hold great promise for disease-modifying therapies. Several DNA repair genes, notably in the mismatch repair (MMR) pathway, modify somatic expansion in HD mouse models (Wheeler and Dion, 2021). To identify novel modifiers of somatic expansion, we have used CRISPR-Cas9 editing in HD knock-in mice to enable in vivo screening of expansion-modifier candidates at scale. This has included testing of HD onset modifier genes emerging from human genome-wide association studies (GWAS), as well as interactions between modifier genes, thereby providing new insight into pathways underlying CAG expansion and potential therapeutic targets.

3.
Proc Natl Acad Sci U S A ; 121(16): e2322924121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38607933

RESUMO

Many Mendelian disorders, such as Huntington's disease (HD) and spinocerebellar ataxias, arise from expansions of CAG trinucleotide repeats. Despite the clear genetic causes, additional genetic factors may influence the rate of those monogenic disorders. Notably, genome-wide association studies discovered somewhat expected modifiers, particularly mismatch repair genes involved in the CAG repeat instability, impacting age at onset of HD. Strikingly, FAN1, previously unrelated to repeat instability, produced the strongest HD modification signals. Diverse FAN1 haplotypes independently modify HD, with rare genetic variants diminishing DNA binding or nuclease activity of the FAN1 protein, hastening HD onset. However, the mechanism behind the frequent and the most significant onset-delaying FAN1 haplotype lacking missense variations has remained elusive. Here, we illustrated that a microRNA acting on 3'-UTR (untranslated region) SNP rs3512, rather than transcriptional regulation, is responsible for the significant FAN1 expression quantitative trait loci signal and allelic imbalance in FAN1 messenger ribonucleic acid (mRNA), accounting for the most significant and frequent onset-delaying modifier haplotype in HD. Specifically, miR-124-3p selectively targets the reference allele at rs3512, diminishing the stability of FAN1 mRNA harboring that allele and consequently reducing its levels. Subsequent validation analyses, including the use of antagomir and 3'-UTR reporter vectors with swapped alleles, confirmed the specificity of miR-124-3p at rs3512. Together, these findings indicate that the alternative allele at rs3512 renders the FAN1 mRNA less susceptible to miR-124-3p-mediated posttranscriptional regulation, resulting in increased FAN1 levels and a subsequent delay in HD onset by mitigating CAG repeat instability.


Assuntos
Doença de Huntington , MicroRNAs , Humanos , Regiões 3' não Traduzidas/genética , Endodesoxirribonucleases , Exodesoxirribonucleases/genética , Estudo de Associação Genômica Ampla , Doença de Huntington/genética , MicroRNAs/genética , Enzimas Multifuncionais
4.
Microbiol Resour Announc ; 11(9): e0036822, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35943260

RESUMO

The Actinobacteriophages Elezi, Asa16, and Niobe infect Arthrobacter globiformis B-2979 and are closely related to Eraser and London in Cluster AZ. They have flexible noncontractile tails, are predicted to be temperate phages, and their genome sizes range between 43,471 bp and 43,602 bp.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...