Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(7): e0287668, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37471337

RESUMO

Plasmodium vivax Duffy Binding Protein (PvDBP) is essential for interacting with Duffy antigen receptor for chemokines (DARC) on the surface of red blood cells to allow invasion. Earlier whole genome sequence analyses provided evidence for the duplications of PvDBP. It is unclear whether PvDBP duplications play a role in recent increase of P. vivax in Sudan and in Duffy-negative individuals. In this study, the prevalence and type of PvDBP duplications, and its relationship to demographic and clinical features were investigated. A total of 200 malaria-suspected blood samples were collected from health facilities in Khartoum, River Nile, and Al-Obied. Among them, 145 were confirmed to be P. vivax, and 43 (29.7%) had more than one PvDBP copies with up to four copies being detected. Both the Malagasy and Cambodian types of PvDBP duplication were detected. No significant difference was observed between the two types of duplications between Duffy groups. Parasitemia was significantly higher in samples with the Malagasy-type than those without duplications. No significant difference was observed in PvDBP duplication prevalence and copy number among study sites. The functional significance of PvDBP duplications, especially those Malagasy-type that associated with higher parasitemia, merit further investigations.


Assuntos
Malária Vivax , Plasmodium vivax , Humanos , Duplicação Gênica , Sudão/epidemiologia , Parasitemia/genética , Prevalência , Antígenos de Protozoários , Proteínas de Protozoários/metabolismo , Malária Vivax/epidemiologia , Malária Vivax/genética , Sistema do Grupo Sanguíneo Duffy/genética , Sistema do Grupo Sanguíneo Duffy/metabolismo , Eritrócitos/metabolismo
2.
Genes (Basel) ; 13(11)2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36360181

RESUMO

The simian malaria parasite Plasmodium knowlesi causes a high number of zoonotic infections in Malaysia. The thrombospondin-related apical merozoite protein (TRAMP) is an essential ligand for binding to the erythrocyte cell surface, whereby it facilitates the invasion. This study is the first attempt to determine the genetic diversity, phylogeography, natural selection and population structure from 97 full-length PkTRAMP gene sequences originating from Malaysia. We found low levels of nucleotide diversity (π~0.0065) for the full-length gene despite samples originating from geographically separated regions (i.e., Peninsular Malaysia and Malaysian Borneo). The rate of synonymous substitutions was significantly higher than that of non-synonymous substitutions, indicating a purifying selection for the full-length gene within the clinical samples. The population genetic analysis revealed that the parasite population is undergoing a significant population expansion. The analysis of the amino acid sequence alignment of 97 PkTRAMP sequences identified 15 haplotypes, of which a major shared haplotype was noted Hap 1 (n = 68, Sarawak; n = 34, Sabah; n = 12, Peninsular Malaysia; n = 22). The phylogenetic analysis using DNA sequences identified two clusters that separated due to geographical distance and three mixed clusters with samples from both Peninsular Malaysia and Malaysian Borneo. Population structure analyses indicated two distinct sub-populations (K = 2). Our findings point to the potential for independent parasite evolution, which could make zoonotic malaria control and elimination even more challenging.


Assuntos
Malária , Plasmodium knowlesi , Animais , Humanos , Plasmodium knowlesi/genética , Plasmodium knowlesi/metabolismo , Merozoítos/metabolismo , Filogenia , Trombospondinas/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Variação Genética/genética , Análise de Sequência de DNA , Malária/parasitologia , Genética Populacional
3.
PLoS Negl Trop Dis ; 16(6): e0010492, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35737709

RESUMO

Plasmodium vivax is the most widespread cause of human malaria. Recent reports of drug resistant vivax malaria and the challenge of eradicating the dormant liver forms increase the importance of vaccine development against this relapsing disease. P. vivax reticulocyte binding protein 1a (PvRBP1a) is a potential vaccine candidate, which is involved in red cell tropism, a crucial step in the merozoite invasion of host reticulocytes. As part of the initial evaluation of the PvRBP1a vaccine candidate, we investigated its genetic diversity and antigenicity using geographically diverse clinical isolates. We analysed pvrbp1a genetic polymorphisms using 202 vivax clinical isolates from six countries. Pvrbp1a was separated into six regions based on specific domain features, sequence conserved/polymorphic regions, and the reticulocyte binding like (RBL) domains. In the fragmented gene sequence analysis, PvRBP1a region II (RII) and RIII (head and tail structure homolog, 152-625 aa.) showed extensive polymorphism caused by random point mutations. The haplotype network of these polymorphic regions was classified into three clusters that converged to independent populations. Antigenicity screening was performed using recombinant proteins PvRBP1a-N (157-560 aa.) and PvRBP1a-C (606-962 aa.), which contained head and tail structure region and sequence conserved region, respectively. Sensitivity against PvRBP1a-N (46.7%) was higher than PvRBP1a-C (17.8%). PvRBP1a-N was reported as a reticulocyte binding domain and this study identified a linear epitope with moderate antigenicity, thus an attractive domain for merozoite invasion-blocking vaccine development. However, our study highlights that a global PvRBP1a-based vaccine design needs to overcome several difficulties due to three distinct genotypes and low antigenicity levels.


Assuntos
Malária Vivax , Plasmodium vivax , Animais , Antígenos de Protozoários , Variação Genética , Humanos , Merozoítos , Polimorfismo Genético , Proteínas de Protozoários/metabolismo , Reticulócitos
4.
Egypt Heart J ; 74(1): 23, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35380300

RESUMO

Myocarditis has been discovered to be a significant complication of coronavirus disease 2019 (COVID-19), a condition caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. COVID-19 myocarditis seems to have distinct inflammatory characteristics, which make it unique to other viral etiologies. The incidence of COVID-19 myocarditis is still not clear as a wide range of figures have been quoted in the literature; however, it seems that the risk of developing myocarditis increases with more severe infection. Furthermore, the administration of the mRNA COVID-19 vaccine has been associated with the development of myocarditis, particularly after the second dose. COVID-19 myocarditis has a wide variety of presentations, ranging from dyspnea and chest pain to acute heart failure and possibly death. It is important to catch any cases of myocarditis, particularly those presenting with fulminant myocarditis which can be characterized by signs of heart failure and arrythmias. Initial work up for suspected myocarditis should include serial troponins and electrocardiograms. If myocardial damage is detected in these tests, further screening should be carried out. Cardiac magnetic resonance imagining and endomyocardial biopsy are the most useful tests for myocarditis. Treatment for COVID-19 myocarditis is still controversial; however, the use of intravenous immunoglobulins and corticosteroids in combination may be effective, particularly in cases of fulminant myocarditis. Overall, the incidence of COVID-19 myocarditis requires further research, while the use of intravenous immunoglobulins and corticosteroids in conjunction requires large randomized controlled trials to determine their efficacy.

5.
Biomed Pharmacother ; 143: 112197, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34560541

RESUMO

The sphingolipids ceramide (Cer), ceramide-1-phosphate (C1P), sphingosine (Sph), and sphingosine-1-phosphate (S1P)) are key signaling molecules that regulate many patho-biological processes. During the last decade, they have gained increasing attention since they may participate in important and numerous retinal processes, such as neuronal survival and death, proliferation and migration of neuronal and vascular cells, inflammation, and neovascularization. Cer for instance has emerged as a key mediator of inflammation and death of neuronal and retinal pigment epithelium cells in experimental models of retinopathies such as glaucoma, age-related macular degeneration (AMD), and retinitis pigmentosa. S1P may have opposite biological actions, preventing photoreceptor and ganglion cell degeneration but also promoting inflammation, fibrosis, and neovascularization in AMD, glaucoma, and pro-fibrotic disorders. Alterations in Cer, S1P, and ceramide 1- phosphate may also contribute to uveitis. Furthermore, use of inhibitors that either prevent Cer increase or modulate S1P signaling, such as Myriocin, desipramine, and Fingolimod (FTY720), have been shown to preserve neuronal viability and retinal function. Collectively, the expanding role for these sphingolipids in the modulation of vital processes in retina cell types and in their dysregulation in retinal degenerations makes them attractive therapeutic targets.


Assuntos
Retina/metabolismo , Doenças Retinianas/metabolismo , Esfingolipídeos/metabolismo , Animais , Ceramidas/metabolismo , Cloridrato de Fingolimode/uso terapêutico , Humanos , Lisofosfolipídeos/metabolismo , Terapia de Alvo Molecular , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/efeitos dos fármacos , Retina/patologia , Doenças Retinianas/tratamento farmacológico , Doenças Retinianas/patologia , Células Ganglionares da Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Transdução de Sinais , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Moduladores do Receptor de Esfingosina 1 Fosfato/uso terapêutico , Receptores de Esfingosina-1-Fosfato/efeitos dos fármacos , Receptores de Esfingosina-1-Fosfato/metabolismo
7.
PLoS One ; 16(1): e0244150, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33411750

RESUMO

Effective biodiversity conservation planning starts with genetic characterization within and among focal populations, in order to understand the likely impact of threats for ensuring the long-term viability of a species. The Wonder Gecko, Teratoscincus keyserlingii, is one of nine members of the genus. This species is distributed in Iran, Afghanistan, and Pakistan, with a small isolated population in the United Arab Emirates (UAE), where it is classified nationally as Critically Endangered. Within its Arabian range, anthropogenic activity is directly linked to the species' decline, with highly localised and severely fragmented populations. Here we describe the evolutionary history of Teratoscincus, by reconstructing its phylogenetic relationships and estimating its divergence times and ancestral biogeography. For conservation implications of T. keyserlingii we evaluate the genetic structure of the Arabian population using genomic data. This study supports the monophyly of most species and reveals considerable intraspecific variability in T. microlepis and T. keyserlingii, which necessitate broad systematic revisions. The UAE population of T. keyserlingii likely arrived from southern Iran during the Pleistocene and no internal structure was recovered within, implying a single population status. Regional conservation of T. keyserlingii requires improved land management and natural habitat restoration in the species' present distribution, and expansion of current protected areas, or establishment of new areas with suitable habitat for the species, mostly in northern Abu Dhabi Emirate.


Assuntos
Evolução Biológica , Conservação dos Recursos Naturais , Lagartos/genética , Animais , Arábia , Biodiversidade , Genômica , Geografia , Filogenia , Análise Espaço-Temporal
8.
Genes (Basel) ; 10(6)2019 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-31181786

RESUMO

Negative Duffy expression on the surface of human red blood cells was believed to be a barrier for Plasmodium vivax infection in most Africans. However, P. vivax has been demonstrated to infect Duffy-negative individuals in several Central and East African countries. In this study, we investigated the distribution of Duffy blood group phenotypes with regard to P. vivax infection and parasitemia in Sudan. Out of 992 microscopic-positive malaria samples, 190 were identified as P. vivax positive infections. Among them, 186 were P. vivax mono-infections and 4 were mixed P. vivax and Plasmodium falciparum infections. A subset of 77 samples was estimated with parasitemia by quantitative real-time PCR. Duffy codons were sequenced from the 190 P. vivax positive samples. We found that the Duffy Fy(a-b+) phenotype was the most prevalent, accounting for 67.9% of all P. vivax infections, while homozygous Duffy-negative Fy(a-b-) accounted for 17.9% of the P. vivax infections. The prevalence of infection in Fy(a-b+) and Fy(a+b-)were significantly higher than Fy(a-b-) phenotypes (p = 0.01 and p < 0.01, respectively). A significantly low proportion of P. vivax infection was observed in Duffy negative individuals Fy(a-b-). This study highlights the prevalence of P. vivax in Duffy-negatives in Sudan and indicates low parasitemia among the Duffy-negative individuals.


Assuntos
Sistema do Grupo Sanguíneo Duffy/sangue , Eritrócitos/parasitologia , Malária Vivax/sangue , Parasitemia/sangue , Adulto , Feminino , Humanos , Malária Falciparum/sangue , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Malária Vivax/epidemiologia , Malária Vivax/parasitologia , Masculino , Parasitemia/epidemiologia , Parasitemia/parasitologia , Fenótipo , Plasmodium falciparum/patogenicidade , Plasmodium vivax/genética , Plasmodium vivax/patogenicidade , Sudão/epidemiologia
9.
Malar J ; 17(1): 297, 2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-30119671

RESUMO

BACKGROUND: Vivax malaria is a leading public health concern worldwide. Due to the high prevalence of Duffy-negative blood group population, Plasmodium vivax in Africa historically is less attributable and remains a neglected disease. The interaction between Duffy binding protein and its cognate receptor, Duffy antigen receptor for chemokine plays a key role in the invasion of red blood cells and serves as a novel vaccine candidate against P. vivax. However, the polymorphic nature of P. vivax Duffy binding protein (DBP), particularly N-terminal cysteine-rich region (PvDBPII), represents a major obstacle for the successful design of a DBP-based vaccine to enable global protection. In this study, the level of pvdbpII sequence variations, Duffy blood group genotypes, number of haplotypes circulating, and the natural selection at pvdbpII in Sudan isolates were analysed and the implication in terms of DBP-based vaccine design was discussed. METHODS: Forty-two P. vivax-infected blood samples were collected from patients from different areas of Sudan during 2014-2016. For Duffy blood group genotyping, the fragment that indicates GATA-1 transcription factor binding site of the FY gene (- 33T > C) was amplified by PCR and sequenced by direct sequencing. The region II flanking pvdbpII was PCR amplified and sequenced by direct sequencing. The genetic diversity and natural selection of pvdbpII were done using DnaSP ver 5.0 and MEGA ver 5.0 programs. Based on predominant, non-synonymous, single nucleotide polymorphisms (SNPs), prevalence of Sudanese haplotypes was assessed in global isolates. RESULTS: Twenty SNPs (14 non-synonymous and 6 synonymous) were identified in pvdbpII among the 42 Sudan P. vivax isolates. Sequence analysis revealed that 11 different PvDBP haplotypes exist in Sudan P. vivax isolates and the region has evolved under positive selection. Among the identified PvDBP haplotypes five PvDBP haplotypes were shared among Duffy-negative as well as Duffy-positive individuals. The high selective pressure was mainly found on the known B cell epitopes (H3) of pvdbpII. Comparison of Sudanese haplotypes, based on 10 predominant non-synonymous SNPs with 10 malaria-endemic countries, demonstrated that Sudanese haplotypes were prevalent in most endemic countries. CONCLUSION: This is the first pvdbp genetic diversity study from an African country. Sudanese isolates display high haplotype diversity and the gene is under selective pressure. Haplotype analysis indicated that Sudanese haplotypes are a representative sample of the global population. However, studies with a large number of samples are needed. These findings would be valuable for the development of PvDBP-based malaria vaccine.


Assuntos
Antígenos de Protozoários/classificação , Antígenos de Protozoários/genética , Sistema do Grupo Sanguíneo Duffy/genética , Variação Genética , Malária Vivax/parasitologia , Plasmodium vivax/genética , Proteínas de Protozoários/classificação , Proteínas de Protozoários/genética , Receptores de Superfície Celular/classificação , Receptores de Superfície Celular/genética , Estudos Transversais , Frequência do Gene , Técnicas de Genotipagem , Haplótipos , Humanos , Plasmodium vivax/isolamento & purificação , Reação em Cadeia da Polimerase , Seleção Genética , Análise de Sequência de DNA , Sudão
10.
Nat Ecol Evol ; 2(2): 377-387, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29255304

RESUMO

Success in eliminating malaria will depend on whether parasite evolution outpaces control efforts. Here, we show that Plasmodium falciparum parasites (the deadliest of the species causing human malaria) found in low-transmission-intensity areas have evolved to invest more in transmission to new hosts (reproduction) and less in within-host replication (growth) than parasites found in high-transmission areas. At the cellular level, this adaptation manifests as increased production of reproductive forms (gametocytes) early in the infection at the expense of processes associated with multiplication inside red blood cells, especially membrane transport and protein trafficking. At the molecular level, this manifests as changes in the expression levels of genes encoding epigenetic and translational machinery. Specifically, expression levels of the gene encoding AP2-G-the transcription factor that initiates reproduction-increase as transmission intensity decreases. This is accompanied by downregulation and upregulation of genes encoding HDAC1 and HDA1-two histone deacetylases that epigenetically regulate the parasite's replicative and reproductive life-stage programmes, respectively. Parasites in reproductive mode show increased reliance on the prokaryotic translation machinery found inside the plastid-derived organelles. Thus, our dissection of the parasite's adaptive regulatory architecture has identified new potential molecular targets for malaria control.


Assuntos
Regulação da Expressão Gênica , Interações Hospedeiro-Parasita , Malária Falciparum/transmissão , Plasmodium falciparum/fisiologia , Adaptação Fisiológica , Perfilação da Expressão Gênica , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...