Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(1)2020 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-33375378

RESUMO

To gain a deeper understanding of the TiCl4 solvation effects in multi-component ionic liquids, we performed ab initio molecular dynamics simulations of 1-butyl-3-methylimidazolium [C4C1Im]+, tetrafluoroborate [BF4]-, chloride [Cl]- both with and without water and titanium tetrachloride TiCl4. Complex interactions between cations and anions are observed in all investigated systems. By further addition of water and TiCl4 this complex interaction network is extended. Observations of the radial distribution functions and number integrals show that water and TiCl4 not only compete with each other to interact mainly with [Cl]-, which strongly influences the cation-[BF4]- interaction, but also interact with each other, which leads to the fact that in certain systems the cation-anion interaction is enhanced. Further investigations of the Voronoi polyhedra analysis have demonstrated that water has a greater impact on the nanosegregated system than TiCl4 which is also due to the fact of the shear amount of water relative to all other components and its higher mobility compared to TiCl4. Overall, the polar network of the IL mixture collapses by including water and TiCl4. In the case of [Cl]- chloride enters the water continuum, while [BF4]- remains largely unaffected, which deeply affects the interaction of the ionic liquid (IL) network.


Assuntos
Líquidos Iônicos/química , Simulação de Dinâmica Molecular , Titânio/química , Ânions , Cátions , Espalhamento a Baixo Ângulo , Solventes/química , Análise Espectral , Água/química , Difração de Raios X
2.
ChemSusChem ; 13(20): 5449-5459, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32780462

RESUMO

Plastic waste in the ocean and on land in the form of nanoplastics is endangering food and drinking water supplies, raising the need for new strategies for the removal of plastic nanoparticles from complex media. In the present contribution we suggest considering ionic liquids as extractants, since they show several advantageous properties that may facilitate the design of efficient separation processes. Through varying the anion and the side chain at the cation, the interactions between the extractant and the polymer can be strengthened and tuned, and thereby the disintegration of the particle into separate polymer chains can be controlled. Oxidized moieties can also be efficiently solvated, given the amphiphilic nature of the considered ionic liquids, allowing also realistic particles to be extracted into these solvents. The phase transfer was found to be thermodynamically and kinetically possible, which is supported by the complicated structure of the ionic liquid-water interface through the rearrangement of the interfacial ions, and the formation of a micelle around the plastic already at the edge of the aqueous phase.


Assuntos
Líquidos Iônicos/química , Extração Líquido-Líquido/métodos , Microplásticos/química , Ânions/química , Cátions/química , Micelas , Conformação Molecular , Simulação de Dinâmica Molecular , Polímeros/química , Solventes/química , Termodinâmica
3.
Phys Chem Chem Phys ; 22(19): 10726-10737, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32150178

RESUMO

Ionic liquids and their mixtures with water show remarkable features in cellulose processing. For this reason, understanding the behavior of carbohydrates in ionic liquids is important. In the present study, we investigated three d-glucose isomers (α, ß and open-chain) in 1-ethyl-3-methylimidazolium acetate in the presence and absence of water, through ab initio molecular dynamics simulations. In the complex hydrogen bonding network of these mixtures, the most interesting observation is that upon water addition every hydrogen bond elongates, except the glucose-glucose hydrogen bond for the open-chain and the α-form which shortens, clearly showing the beginning of the crystallization process. The ring glucose rearranges from on-top to in-plane and the open form changes from a coiled to a more linear arrangement when adding water which explains the contradiction that the center of mass distances of the glucose molecules with other glucose molecules grow while the hydrogen bonds shorten. The appearance of coiled open forms indicates that the previously suggested isomerization between these forms is possible and might play a role in the solubility of the related carbohydrates. The calculated IR and VCD spectra reveal insight into the intermolecular interactions, with good to excellent agreements with experimental spectra. Investigating the role of the cation, distances between the acidic carbon atom of the cation and the glucose carbon atom where ring closure and opening occurs are found, which are way shorter than dispersion-like interactions between aliphatic hydrocarbons.

4.
Phys Chem Chem Phys ; 21(8): 4472-4486, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30734802

RESUMO

Four different ionic liquids (ILs) consisting of the bis(trifluoromethanesulfonyl)imide ([NTf2]-) anion, with structurally similar systematically varying cations, are investigated herein through classical molecular dynamics. The following cations were examined: pyrrolidinium ([pyrHH]+), piperidinium ([pipHH]+), N-butyl-pyrrolidinium ([pyrH4]+) and N-butyl-N-methyl-pyrrolidinium ([pyr14]+). The focus herein is on understanding the effect of increased ring size and alkyl chain addition, resulting in three protic ILs and one aprotic IL ([pyr14][NTf2]), on the physicochemical properties of the liquids studied herein. Addition of alkyl groups to the cation appears to cause a distinct weakening of inter-ionic interactions and ordering in comparison to increasing the ring size. The influence of these structural changes, however, is clearer on the ordering of like ions than oppositely charged ions. The protic ILs exhibit important similarities in the spatial arrangement of ions on account of their strong and directed H-bonding interactions. The cation is seen to influence particular conformations of the anion which further explains the more selective ordering in the protic ILs. However, the aggregation of the butyl side chain is also seen to be an important structural determinant in [pyrH4][NTf2] and [pyr14][NTf2]. We analyze the formation of domains in order to quantitatively evaluate the microheterogeneity arising in these systems from the separation of phases according to polarities. Velocity autocorrelation functions are studied in order to characterize the stronger caging effect in the protic ILs and the weakening of the caging effect upon addition of alkyl groups to the cation, these are consistent with the coordination environment within the respective liquids. In conclusion, significant correlations between the structure and properties of these ILs are observed and quantified within this contribution.

5.
ACS Omega ; 3(8): 8567-8582, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458986

RESUMO

With the aid of ab initio molecular dynamics simulations, we investigate an ionic liquid (IL) mixture composed of three components 1-butyl-3-methylimidazolium [C4C1Im]+, tetrafluoroborate [BF4]-, and chloride [Cl]- without and with water. In the pure IL mixture, we observe an already complex network of interactions between cations and anions, and addition of water to the system even extends the complexity. Observed number integrals show that the coordination number between cations and anions is reduced in the system with water compared to that in the pure system. Further studies show that the Coulombic network of the strongly coordinating anion [Cl]- is disturbed by water, while that of the weakly coordinating anion [BF4]- is not. These observations can also be confirmed by the Voronoi polyhedra analysis, which shows that the polar network of microheterogeneous IL collapses by the introduction of water. Hydrogen-acceptor interactions revealed that the [Cl]- anions are transferred from being situated in the IL to the water continuum, while [BF4]- is almost unperturbed; these effects mainly influence the interplay of the ionic liquid network.

6.
Acc Chem Res ; 50(12): 2949-2957, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29131941

RESUMO

The structure-directing or template effect has been invoked several times for ionic liquids to explain the different outcome in material synthesis, namely, different scaffolds or geometrical arrangements with varying ionic liquids. It is obvious to assume that such an effect can originate from the most likely complex microstructure, being present within the ionic liquid itself. In that regard, ionic liquids have already been shown to undergo a nanosegregation into polar and nonpolar phases, which is commonly known and denoted as microheterogeneity. In order to provide detailed insight on the molecular level and to understand the effects rising from this structuring, we performed molecular dynamics simulations on selected very simple model systems composed of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, considering ethyl, butyl, hexyl, and octyl side chains attached to the cations, mixed with either n-dodecanol or n-butanol. By analyzing snapshots of the simulation boxes and calculating spatial distribution functions, we can visualize that with increasing side chains, the systems show considerable nanosegregation into polar and nonpolar domains. Combined angular and distance distribution functions show that in case of the nanosegregating systems the side chains of the cations are preferentially arranged in a parallel fashion, which indicates a micelle-like structure for the ionic liquids. The alcohol molecules participate in and are, therefore, influenced by this microheterogeneity. It can be shown that in the case of the short IL alkyl side chains, the self-aggregation of the nonpolar units of the alcohols is much stronger, while for the long chain cations, the nonpolar entities of the alcohols are most often connected to the nonpolar units of the ionic liquids. Using our domain analysis tool, we can quantify these observations by tracking the number, size, and shape of the polar and nonpolar entities present in the different investigated systems. The aforementioned combined angular-distance distribution functions reveal a structure-directing effect of the ionic liquids on the alcohol molecules within our simple model systems. The ionic liquids act as template and order the alcohol molecules according to their own structure, resulting in a parallel alignment of the alkyl side chains of the alcohols and ionic liquid cations, with both polar groups being at the same side. These observations show that the microheterogeneous structure of ionic liquids can indeed be applied to order substrates with respect to each other or, for example, to catalysts in a predetermined fashion, opening new possibilities for explaining or enhancing selectivities of chemical reactions in ionic liquids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...