Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(12): e32726, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975154

RESUMO

COVID-19 (Coronavirus), an acute respiratory disorder, is caused by SARS-CoV-2 (coronavirus severe acute respiratory syndrome). The high prevalence of COVID-19 infection has drawn attention to a frequent illness symptom: olfactory and gustatory dysfunction. The primary purpose of this manuscript is to create a Computer-Assisted Diagnostic (CAD) system to determine whether a COVID-19 patient has normal, mild, or severe anosmia. To achieve this goal, we used fluid-attenuated inversion recovery (FLAIR) Magnetic Resonance Imaging (FLAIR-MRI) and Diffusion Tensor Imaging (DTI) to extract the appearance, morphological, and diffusivity markers from the olfactory nerve. The proposed system begins with the identification of the olfactory nerve, which is performed by a skilled expert or radiologist. It then proceeds to carry out the subsequent primary steps: (i) extract appearance markers (i.e., 1 s t and 2 n d order markers), morphology/shape markers (i.e., spherical harmonics), and diffusivity markers (i.e., Fractional Anisotropy (FA) & Mean Diffusivity (MD)), (ii) apply markers fusion based on the integrated markers, and (iii) determine the decision and corresponding performance metrics based on the most-promising classifier. The current study is unusual in that it ensemble bags the learned and fine-tuned ML classifiers and diagnoses olfactory bulb (OB) anosmia using majority voting. In the 5-fold approach, it achieved an accuracy of 94.1%, a balanced accuracy (BAC) of 92.18%, precision of 91.6%, recall of 90.61%, specificity of 93.75%, F1 score of 89.82%, and Intersection over Union (IoU) of 82.62%. In the 10-fold approach, stacking continued to demonstrate impressive results with an accuracy of 94.43%, BAC of 93.0%, precision of 92.03%, recall of 91.39%, specificity of 94.61%, F1 score of 91.23%, and IoU of 84.56%. In the leave-one-subject-out (LOSO) approach, the model continues to exhibit notable outcomes, achieving an accuracy of 91.6%, BAC of 90.27%, precision of 88.55%, recall of 87.96%, specificity of 92.59%, F1 score of 87.94%, and IoU of 78.69%. These results indicate that stacking and majority voting are crucial components of the CAD system, contributing significantly to the overall performance improvements. The proposed technology can help doctors assess which patients need more intensive clinical care.

2.
Sci Rep ; 14(1): 12104, 2024 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802440

RESUMO

This study aims to develop an AI-enhanced methodology for the expedited and accurate diagnosis of Multiple Sclerosis (MS), a chronic disease affecting the central nervous system leading to progressive impairment. Traditional diagnostic methods are slow and require substantial expertise, underscoring the need for innovative solutions. Our approach involves two phases: initially, extracting features from brain MRI images using first-order histograms, the gray level co-occurrence matrix, and local binary patterns. A unique feature selection technique combining the Sine Cosine Algorithm with the Sea-horse Optimizer is then employed to identify the most significant features. Utilizing the eHealth lab dataset, which includes images from 38 MS patients (mean age 34.1 ± 10.5 years; 17 males, 21 females) and matched healthy controls, our model achieved a remarkable 97.97% detection accuracy using the k-nearest neighbors classifier. Further validation on a larger dataset containing 262 MS cases (199 females, 63 males; mean age 31.26 ± 10.34 years) and 163 healthy individuals (109 females, 54 males; mean age 32.35 ± 10.30 years) demonstrated a 92.94% accuracy for FLAIR images and 91.25% for T2-weighted images with the Random Forest classifier, outperforming existing MS detection methods. These results highlight the potential of the proposed technique as a clinical decision-making tool for the early identification and management of MS.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Esclerose Múltipla , Humanos , Esclerose Múltipla/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Feminino , Masculino , Adulto , Inteligência Artificial , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Interpretação de Imagem Assistida por Computador/métodos , Estudos de Casos e Controles , Adulto Jovem , Pessoa de Meia-Idade , Processamento de Imagem Assistida por Computador/métodos
3.
Diagnostics (Basel) ; 14(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38337771

RESUMO

Ischemic heart condition is one of the most prevalent causes of death that can be treated more effectively and lead to fewer fatalities if identified early. Heart muscle fibrosis affects the diastolic and systolic function of the heart and is linked to unfavorable cardiovascular outcomes. Cardiac magnetic resonance (CMR) scarring, a risk factor for ischemic heart disease, may be accurately identified by magnetic resonance imaging (MRI) to recognize fibrosis. In the past few decades, numerous methods based on MRI have been employed to identify and categorize cardiac fibrosis. Because they increase the therapeutic advantages and the likelihood that patients will survive, developing these approaches is essential and has significant medical benefits. A brand-new method that uses MRI has been suggested to help with diagnosing. Advances in deep learning (DL) networks contribute to the early and accurate diagnosis of heart muscle fibrosis. This study introduces a new deep network known as FibrosisNet, which detects and classifies fibrosis if it is present. It includes some of 17 various series layers to achieve the fibrosis detection target. The introduced classification system is trained and evaluated for the best performance results. In addition, deep transfer-learning models are applied to the different famous convolution neural networks to find fibrosis detection architectures. The FibrosisNet architecture achieves an accuracy of 96.05%, a sensitivity of 97.56%, and an F1-Score of 96.54%. The experimental results show that FibrosisNet has numerous benefits and produces higher results than current state-of-the-art methods and other advanced CNN approaches.

4.
Sci Rep ; 13(1): 15019, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37699992

RESUMO

This paper presents a machine learning-based technique for interpreting bone scintigraphy images, focusing on feature extraction and introducing a new feature selection method called GJOW. GJOW enhances the effectiveness of the golden jackal optimization (GJO) algorithm by integrating operators from the whale optimization algorithm (WOA). The technique's performance is evaluated through extensive experiments using 18 benchmark datasets and 581 bone scan images obtained from a gamma camera, including 362 abnormal and 219 normal cases. The results highlight the superior predictive effectiveness of the GJOW algorithm in bone metastasis detection, achieving an accuracy of 71.79% and specificity of 91.14%. The contributions of this study include the introduction of a new machine learning-based approach for detecting bone metastasis using gamma camera scans, leading to improved accuracy in identifying bone metastases. The findings have practical implications for early detection and intervention, potentially improving patient outcomes.


Assuntos
Neoplasias Ósseas , Canidae , Humanos , Animais , Baleias , Chacais , Tomografia Computadorizada por Raios X , Algoritmos , Benchmarking , Neoplasias Ósseas/diagnóstico por imagem
5.
Diagnostics (Basel) ; 13(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37685342

RESUMO

Skin cancer, specifically melanoma, is a serious health issue that arises from the melanocytes, the cells that produce melanin, the pigment responsible for skin color. With skin cancer on the rise, the timely identification of skin lesions is crucial for effective treatment. However, the similarity between some skin lesions can result in misclassification, which is a significant problem. It is important to note that benign skin lesions are more prevalent than malignant ones, which can lead to overly cautious algorithms and incorrect results. As a solution, researchers are developing computer-assisted diagnostic tools to detect malignant tumors early. First, a new model based on the combination of "you only look once" (YOLOv5) and "ResNet50" is proposed for melanoma detection with its degree using humans against a machine with 10,000 training images (HAM10000). Second, feature maps integrate gradient change, which allows rapid inference, boosts precision, and reduces the number of hyperparameters in the model, making it smaller. Finally, the current YOLOv5 model is changed to obtain the desired outcomes by adding new classes for dermatoscopic images of typical lesions with pigmented skin. The proposed approach improves melanoma detection with a real-time speed of 0.4 MS of non-maximum suppression (NMS) per image. The performance metrics average is 99.0%, 98.6%, 98.8%, 99.5, 98.3%, and 98.7% for the precision, recall, dice similarity coefficient (DSC), accuracy, mean average precision (MAP) from 0.0 to 0.5, and MAP from 0.5 to 0.95, respectively. Compared to current melanoma detection approaches, the provided approach is more efficient in using deep features.

6.
Diagnostics (Basel) ; 13(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36900008

RESUMO

Refined hybrid convolutional neural networks are proposed in this work for classifying brain tumor classes based on MRI scans. A dataset of 2880 T1-weighted contrast-enhanced MRI brain scans are used. The dataset contains three main classes of brain tumors: gliomas, meningiomas, and pituitary tumors, as well as a class of no tumors. Firstly, two pre-trained, fine-tuned convolutional neural networks, GoogleNet and AlexNet, were used for classification process, with validation and classification accuracy being 91.5% and 90.21%, respectively. Then, to improving the performance of the fine-tuning AlexNet, two hybrid networks (AlexNet-SVM and AlexNet-KNN) were applied. These hybrid networks achieved 96.9% and 98.6% validation and accuracy, respectively. Thus, the hybrid network AlexNet-KNN was shown to be able to apply the classification process of the present data with high accuracy. After exporting these networks, a selected dataset was employed for testing process, yielding accuracies of 88%, 85%, 95%, and 97% for the fine-tuned GoogleNet, the fine-tuned AlexNet, AlexNet-SVM, and AlexNet-KNN, respectively. The proposed system would help for automatic detection and classification of the brain tumor from the MRI scans and safe the time for the clinical diagnosis.

7.
Front Biosci (Landmark Ed) ; 27(9): 276, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36224026

RESUMO

Coronavirus disease 2019 (COVID-19) is a respiratory illness that started and rapidly became the pandemic of the century, as the number of people infected with it globally exceeded 253.4 million. Since the beginning of the pandemic of COVID-19, over two years have passed. During this hard period, several defies have been coped by the scientific society to know this novel disease, evaluate it, and treat affected patients. All these efforts are done to push back the spread of the virus. This article provides a comprehensive review to learn about the COVID-19 virus and its entry mechanism, its main repercussions on many organs and tissues of the body, identify its symptoms in the short and long terms, in addition to recognize the role of diagnosis imaging in COVID-19. Principally, the quick evolution of active vaccines act an exceptional accomplishment where leaded to decrease rate of death worldwide. However, some hurdels still have to be overcome. Many proof referrers that infection with CoV-19 causes neurological dis function in a substantial ratio of influenced patients, where these symptoms appear severely during the infection and still less is known about the potential long term consequences for the brain, where Loss of smell is a neurological sign and rudimentary symptom of COVID-19. Hence, we review the causes of olfactory bulb dysfunction and Anosmia associated with COVID-19, the latest appropriate therapeutic strategies for the COVID-19 treatment (e.g., the ACE2 strategy and the Ang II receptor), and the tests through the follow-up phases. Additionally, we discuss the long-term complications of the virus and thus the possibility of improving therapeutic strategies. Moreover, the main steps of artificial intelligence that have been used to foretell and early diagnose COVID-19 are presented, where Artificial intelligence, especially machine learning is emerging as an effective approach for diagnostic image analysis with performance in the discriminate diagnosis of injuries of COVID-19 on multiple organs, comparable to that of human practitioners. The followed methodology to prepare the current survey is to search the related work concerning the mentioned topic from different journals, such as Springer, Wiley, and Elsevier. Additionally, different studies have been compared, the results are collected and then reported as shown. The articles are selected based on the year (i.e., the last three years). Also, different keywords were checked (e.g., COVID-19, COVID-19 Treatment, COVID-19 Symptoms, and COVID-19 and Anosmia).


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Vacinas , Enzima de Conversão de Angiotensina 2 , Anosmia , Inteligência Artificial , COVID-19/complicações , Humanos
8.
Sensors (Basel) ; 22(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36298186

RESUMO

Diabetic retinopathy (DR) is a major health problem that can lead to vision loss if not treated early. In this study, a three-step system for DR detection utilizing optical coherence tomography (OCT) is presented. First, the proposed system segments the retinal layers from the input OCT images. Second, 3D features are extracted from each retinal layer that include the first-order reflectivity and the 3D thickness of the individual OCT layers. Finally, backpropagation neural networks are used to classify OCT images. Experimental studies on 188 cases confirm the advantages of the proposed system over related methods, achieving an accuracy of 96.81%, using the leave-one-subject-out (LOSO) cross-validation. These outcomes show the potential of the suggested method for DR detection using OCT images.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Humanos , Retinopatia Diabética/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Retina/diagnóstico por imagem , Redes Neurais de Computação
9.
Materials (Basel) ; 14(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34442989

RESUMO

The article deals with the problem of a sharp corner, the tip of which is located on the bi-material interface. The paper presents a qualitative and quantitative description of singular stress fields occurring in the tip area of such a stress concentrator. The qualitative description was obtained by solving the problem of the plane theory of elasticity with appropriately defined boundary conditions. To obtain a quantitative description, it was necessary to determine the values of generalised stress intensity factors (GSIFs). The GSIFs were determined using the developed analytical-numerical method. The calculations were made for various load variants (uniaxial/biaxial tension load, shear load) and notch positions (single/double edge-notched plate, centre-notched plate). Additionally, the impact of notch geometry (height and opening angle) and relative stiffness (Young's moduli ratio of both components of bi-material) on GSIFs was investigated. It has been noticed that with a decrease in the relative stiffness and an increase in the notch angle or its height, the normalised GSIFs values increased. The obtained results were compared with the data available in the literature and their satisfactory agreement with those presented by other scientists was found.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...