Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Syst Biol ; 72(4): 925-945, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37083277

RESUMO

The mitochondrial genomes of Bilateria are relatively conserved in their protein-coding, rRNA, and tRNA gene complement, but the order of these genes can range from very conserved to very variable depending on the taxon. The supposedly conserved gene order of Annelida has been used to support the placement of some taxa within Annelida. Recently, authors have cast doubts on the conserved nature of the annelid gene order. Various factors may influence gene order variability including, among others, increased substitution rates, base composition differences, structure of noncoding regions, parasitism, living in extreme habitats, short generation times, and biomineralization. However, these analyses were neither done systematically nor based on well-established reference trees. Several focused on only a few of these factors and biological factors were usually explored ad-hoc without rigorous testing or correlation analyses. Herein, we investigated the variability and evolution of the annelid gene order and the factors that potentially influenced its evolution, using a comprehensive and systematic approach. The analyses were based on 170 genomes, including 33 previously unrepresented species. Our analyses included 706 different molecular properties, 20 life-history and ecological traits, and a reference tree corresponding to recent improvements concerning the annelid tree. The results showed that the gene order with and without tRNAs is generally conserved. However, individual taxa exhibit higher degrees of variability. None of the analyzed life-history and ecological traits explained the observed variability across mitochondrial gene orders. In contrast, the combination and interaction of the best-predicting factors for substitution rate and base composition explained up to 30% of the observed variability. Accordingly, correlation analyses of different molecular properties of the mitochondrial genomes showed an intricate network of direct and indirect correlations between the different molecular factors. Hence, gene order evolution seems to be driven by molecular evolutionary aspects rather than by life history or ecology. On the other hand, variability of the gene order does not predict if a taxon is difficult to place in molecular phylogenetic reconstructions using sequence data or not. We also discuss the molecular properties of annelid mitochondrial genomes considering canonical views on gene evolution and potential reasons why the canonical views do not always fit to the observed patterns without making some adjustments. [Annelida; compositional biases; ecology; gene order; life history; macroevolution; mitochondrial genomes; substitution rates.].


Assuntos
Anelídeos , Genoma Mitocondrial , Animais , Genoma Mitocondrial/genética , Ordem dos Genes , Filogenia , Anelídeos/genética , Genes Mitocondriais , Evolução Molecular , DNA Mitocondrial/genética
2.
Zookeys ; 1132: 163-188, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36760492

RESUMO

Despite being one of the most common groups of polychaetes on intertidal shores, the genus Perinereis (Nereididae) is comparatively poorly known taxonomically, with confusion still existing due to the lack of comprehensive systematic studies. The systematics of Perinereis species from the intertidal Egyptian coasts of the Red Sea, Gulf of Suez and Suez Canal have been investigated using morphology and the mitochondrial barcoding marker cytochrome oxidase subunit I (COI). New sequence data was obtained for 102 Perinereis specimens and analysis included all publicly available COI data from other Perinereis species. The COI data indicate that monophyly of the P.nuntia species group is doubtful, as specimens identified in this species group from south-eastern Asia and Australia form a monophyletic group exclusive of the three new species described in this study from the Red Sea region. A morphometric character set (26 characters) was used to identify and characterize each specimen in the study. Three distinct morphospecies belonging to the P.nuntia species group were found, each differentiated by the number and type of paragnaths on pharyngeal areas V and VI, relative sizes of parapodial lobes, type of notochaetae and neurochaetae, and form of the neurochaetal falciger blades. The three morphospecies were well supported by COI data: two of the three new species, Perinereissuezensis sp. nov. and Perinereisfayedensis sp. nov., are closely similar to P.nuntia sensu stricto, while the other, Perinereisdamietta sp. nov., is similar to P.heterodonta. The new species are described and illustrated, and bring the number of species in Perinereis to 97. The new species are compared and contrasted to the closely similar P.heterodonta, P.nuntia and other congeners from the region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...