Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroreport ; 32(10): 840-850, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34050116

RESUMO

Valproic acid (VPA) is a powerful antiepileptic drug that was associated with several neurological and hepatic problems especially with increasing its dose and duration. These problems may be metabolic in origin and related to glucose homeostasis. So, the present study investigated the effect of different doses and durations of VPA on the expression of glucose transporters (Glut1 and Glut4), oxidative stress and inflammatory cytokine (IL-6) in the liver and specific brain regions. Seventy-two male Sprague-Dawley rats were randomly allocated into three equal groups: (1) saline group, (2) 200 mg VPA group and (3) 400 mg VPA group. By the end of experiments, the expressions of Glut1, Glut4 nuclear factor erythroid-like 2 related factor (Nrf2), IL-6 and oxidative stress markers [malondialdehyde (MDA) and glutathione (GSH)] in the liver, corpus striatum, prefrontal cortex (PFC) and cerebellum were assessed. We found that administration of VPA (200 mg and 400 mg) caused a significant decrease in the Glut1 and Glut4 expression in different tissues in a dose- and time-dependent manner (P < 0.01). Also, VPA (200 and 400 mg) caused a significant increase in MDA with a decrease in GSH in tissues at different times. Moreover, VPA (200 and 400 mg) caused significant upregulation in IL-6 expression and downregulation in Nrf2 expression (P < 0.01). The results suggest that increasing the dose and time of VPA therapy downregulates Glut1 and Glut4 in the liver and brain which may impair glucose uptake in these tissues. This effect was associated with enhanced oxidative stress, downregulation of nrf2 and upregulation of IL-6 in liver and brain tissues.


Assuntos
Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Interleucina-6/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ácido Valproico/administração & dosagem , Animais , Anticonvulsivantes/administração & dosagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Esquema de Medicação , Transportador de Glucose Tipo 1/antagonistas & inibidores , Transportador de Glucose Tipo 4/antagonistas & inibidores , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Estresse Oxidativo/fisiologia , Ratos , Ratos Sprague-Dawley , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
2.
Brain Sci ; 10(10)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096612

RESUMO

Asymptomatic valproic acid (VPA)-induced hyperammonemia in the absence of liver impairment is fairly common. However, the underlying mechanisms through which VPA causes elevation in plasma ammonia (NH4) remains under investigation. Male Sprague Dawley rats (n = 72) were randomly allocated to receive VPA 400 mg/kg, 200 mg/kg, or vehicle IP daily for either 8, 14, or 28 consecutive days. The behavioral effects of VPA were assessed. Plasma, liver, and prefrontal cortex (PFC), striatum (Str), and cerebellum (Cere) were collected 1 h post last injection and assayed for NH4 concentration and glutamine synthetase (GS) enzyme activity. Chronic VPA treatment caused attenuation of measured behavioral reflexes (p < 0.0001) and increase in plasma NH4 concentration (p < 0.0001). The liver and brain also showed significant increase in tissue NH4 concentrations (p < 0.0001 each) associated with significant reduction in GS activity (p < 0.0001 and p = 0.0003, respectively). Higher tissue NH4 concentrations correlated with reduced GS activity in the liver (r = -0.447, p = 0.0007) but not in the brain (r = -0.058, p = 0.4). Within the brain, even though NH4 concentrations increased in the PFC (p = 0.001), Str (p < 0.0001), and Cere (p = 0.01), GS activity was reduced only in the PFC (p < 0.001) and not in Str (p = 0.2) or Cere (p = 0.1). These results suggest that VPA-induced elevation in plasma NH4 concentration could be related, at least in part, to the suppression of GS activity in liver and brain tissues. However, even though GS is the primary mechanism in brain NH4 clearance, the suppression of brain GS does not seem to be the main factor in explaining the elevation in brain NH4 concentration. Further research is urgently needed to investigate brain NH4 dynamics under chronic VPA treatment and whether VPA clinical efficacy in treating seizure disorders and bipolar mania is impacted by its effect on GS activity or other NH4 metabolizing enzymes.

3.
Front Cell Neurosci ; 11: 385, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29259544

RESUMO

Striatal low-threshold spike interneurons (LTSIs) are tonically active neurons that express GABA and nitric oxide synthase and are involved in information processing as well as neurovascular coupling. While mu opioid receptors (MORs) and their ligand encephalin are prominent in the striatum, their action on LTSIs has not been investigated. We addressed this issue carrying out whole-cell recordings in transgenic mice in which the NPY-expressing neurons are marked with green fluorescent protein (GFP). The MOR agonist (D-Ala(2), N-MePhe(4), Gly-ol)-enkephalin (DAMGO) produced dual effects on subpopulations of LTSIs. DAMGO caused inhibitory effects, accompanied by decreases of spontaneous firing, in 62% of LTSIs, while depolarizing effects (accompanied by an increase in spontaneous firing) were observed in 23% of LTSIs tested. The dual effects of DAMGO persisted in the presence of tetrodotoxin (TTX), a sodium channel blocker or in the presence of the nicotinic acetylcholine receptor antagonist mecamylamine. However, in the presence of either the GABAA receptor antagonist picrotoxin or the muscarinic cholinergic receptor antagonist atropine, DAMGO only elicited inhibitory effects on LTSIs. Furthermore, we found that DAMGO decreased the amplitude and frequency of spontaneous GABAergic events. Unexpectedly, these effects of DAMGO on spontaneous GABAergic events disappeared after blocking of the muscarinic and nicotinic cholinergic blockers, showing that GABA inputs to LTSIs are not directly modulated by presynaptic MORs. These finding suggest that activation of MORs affect LTSIs both directly and indirectly, through modulation of GABAergic and cholinergic tones. The complex balance between direct and indirect effects determines the net effect of DAMGO on LTSIs.

4.
Front Cell Neurosci ; 10: 111, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27199665

RESUMO

The striatum is the largest nucleus of the basal ganglia and is crucially involved in action selection and reward processing. Cortical and thalamic inputs to the striatum are processed by local networks in which several classes of interneurons play an important, but still poorly understood role. Here we investigated the interactions between cholinergic and low-threshold spike (LTS) interneurons. LTS interneurons were hyperpolarized by co-application of muscarinic and nicotinic receptor antagonists (atropine and mecamylamine, respectively). Mecamylamine alone also caused hyperpolarizations, while atropine alone caused depolarizations and increased firing. LTS interneurons were also under control of tonic GABA, as application of the GABAA receptor antagonist picrotoxin caused depolarizations and increased firing. Frequency of spontaneous GABAergic events in LTS interneurons was increased by co-application of atropine and mecamylamine or by atropine alone, but reduced by mecamylamine alone. In the presence of picrotoxin and tetrodotoxin (TTX), atropine and mecamylamine depolarized the LTS interneurons. We concluded that part of the excitatory effects of tonic acetylcholine (ACh) on LTS interneurons were due to cholinergic modulation of tonic GABA. We then studied the influence of LTS interneurons on cholinergic interneurons. Application of antagonists of somatostatin or neuropeptide Y (NPY) receptors or of an inhibitor of nitric oxide synthase (L-NAME) did not cause detectable effects in cholinergic interneurons. However, prolonged synchronized depolarizations of LTS interneurons (elicited with optogenetics tools) caused slow-onset depolarizations in cholinergic interneurons, which were often accompanied by strong action potential firing and were fully abolished by L-NAME. Thus, a mutual excitatory influence exists between LTS and cholinergic interneurons in the striatum, providing an opportunity for sustained activation of the two cell types. This activation may endow the striatal microcircuits with the ability to enter a high ACh/high nitric oxide regime when adequately triggered by external excitatory stimuli to these interneurons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...