Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 522: 151-162, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29597127

RESUMO

HYPOTHESIS: The viscosity and stability of CO2/water foams at elevated temperature can be increased significantly with highly viscoelastic aqueous lamellae. The slow thinning of these viscoelastic lamellae leads to greater foam stability upon slowing down Ostwald ripening and coalescence. In the aqueous phase, the viscoelasticity may be increased by increasing the surfactant tail length to form more entangled micelles even at high temperatures and salinity. EXPERIMENTS: Systematic measurements of the steady state shear viscosity of aqueous solutions of the diamine surfactant (C16-18N(CH3)C3N(CH3)2) were conducted at varying surfactant concentrations and salinity to determine the parameters for formation of entangled wormlike micelles. The apparent viscosity and stability of CO2/water foams were compared for systems with viscoelastic entangled micellar aqueous phases relative to those with much less viscous spherical micelles. FINDINGS: We demonstrated for the first time stable CO2/water foams at temperatures up to 120 °C and CO2 volumetric fractions up to 0.98 with a single diamine surfactant, C16-18N(CH3)C3N(CH3)2. The foam stability was increased by increasing the packing parameter of the surfactant with a long tail and methyl substitution on the amine to form entangled viscoelastic wormlike micelles in the aqueous phase. The foam was more viscous and stable compared to foams with spherical micelles in the aqueous lamellae as seen with C12-14N(EO)2 and C16-18N(EO)C3N(EO)2.

2.
J Colloid Interface Sci ; 470: 80-91, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26930543

RESUMO

The interfacial properties for surfactants at the supercritical CO2-water (C-W) interface at temperatures above 80°C have very rarely been reported given limitations in surfactant solubility and chemical stability. These limitations, along with the weak solvent strength of CO2, make it challenging to design surfactants that adsorb at the C-W interface, despite the interest in CO2-in-water (C/W) foams (also referred to as macroemulsions). Herein, we examine the thermodynamic, interfacial and rheological properties of the surfactant C12-14N(EO)2 in systems containing brine and/or supercritical CO2 at elevated temperatures and pressures. Because the surfactant is switchable from the nonionic state to the protonated cationic state as the pH is lowered over a wide range in temperature, it is readily soluble in brine in the cationic state below pH 5.5, even up to 120°C, and also in supercritical CO2 in the nonionic state. As a consequence of the affinity for both phases, the surfactant adsorption at the CO2-water interface was high, with an area of 207Å(2)/molecule. Remarkably, the surfactant lowered the interfacial tension (IFT) down to ∼5mN/m at 120°C and 3400 psia (23MPa), despite the low CO2 density of 0.48g/ml, indicating sufficient solvation of the surfactant tails. The phase behavior and interfacial properties of the surfactant in the cationic form were favorable for the formation and stabilization of bulk C/W foam at high temperature and high salinity. Additionally, in a 1.2 Darcy glass bead pack at 120°C, a very high foam apparent viscosity of 146 cP was observed at low interstitial velocities given the low degree of shear thinning. For a calcium carbonate pack, C/W foam was formed upon addition of Ca(2+) and Mg(2+) in the feed brine to keep the pH below 4, by the common ion effect, in order to sufficiently protonate the surfactant. The ability to form C/W foams at high temperatures is of interest for a variety of applications in chemical synthesis, separations, materials science, and subsurface energy production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...