Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 24(3)2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30678191

RESUMO

The aim of this study was to modify surface properties of immobilized rutile TiO2 using Argon cold plasma treatment and to evaluate the performance of the catalyst in photocatalytic elimination of synthetic dyes in UV/TiO2/H2O2 process. The surface-modified TiO2 was characterized by XRD, EDX, SEM, UV-DRS and XPS analyses. Response surface methodology was adopted to achieve high catalyst efficiency by evaluating the effect of two main independent cold plasma treatment parameters (exposure time and pressure) on surface modification of the catalyst. The increase of the plasma operation pressure led to higher decolorization percentage, while the increase of plasma exposure time decreased the decolorization efficiency. RSM methodology predicted optimum plasma treatment conditions to be 0.78 Torr and 21 min of exposure time, which resulted in decolorization of 10 mg/L solution of the malachite green solution by 94.94% in 30 min. The plasma treatment decreased the oxygen to titanium ratio and caused oxygen vacancy on the surface of the catalyst, resulting in the superior performance of the plasma-treated catalyst. Pseudo first-order kinetic rate constant for the plasma-treated catalyst was 4.28 and 2.03 times higher than the rate constant for the non-treated photocatalyst in decolorization of aqueous solutions of malachite green and crystal violet, respectively.


Assuntos
Argônio/química , Corantes/química , Nanoestruturas/química , Gases em Plasma/química , Titânio/química , Adsorção , Catálise , Peróxido de Hidrogênio/química , Cinética , Nanoestruturas/ultraestrutura , Processos Fotoquímicos , Raios Ultravioleta , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...