Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38930215

RESUMO

The effects of the secondary processes of Hot Isostatic Pressing (HIP) at 920 °C and Heat Treatment (HT) at 1000 °C of Electron Beam-Melted (EBM) Ti-6Al-4V alloy on the microstructure and hydrogen embrittlement (HE) after electrochemical hydrogen charging (EC) were investigated. Comprehensive characterization, including microstructural analysis, X-ray diffraction (XRD), thermal desorption analysis, and mechanical testing, was conducted. After HIP, the ß-phase morphology changed from discontinuous Widmanstätten to a more continuous structure, 10 times and ~1.5 times larger in length and width, respectively. Following HT, the ß-phase morphology changed to a continuous "web-like" structure, ~4.5 times larger in width. Despite similar mechanical behavior in their non-hydrogenated state, the post-treated alloys exhibit increased susceptibility to HE due to enhanced hydrogen penetration into the bulk. It is shown that hydrogen content in the samples' bulk is inversely dependent on surface hydride content. It is therefore concluded that the formed hydride surface layer is crucial for inhibiting further hydrogen penetration and adsorption into the bulk and thus for reducing HE susceptibility. The lack of a hydride surface layer in the samples subject to HIP and HT highlights the importance of choosing secondary treatment process parameters that will not increase the continuous ß-phase morphology of EBM Ti-6Al-4V alloys in applications that involve electrochemical hydrogen environments.

2.
Microsc Microanal ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767284

RESUMO

2D materials are emerging as promising nanomaterials for applications in energy storage and catalysis. In the wet chemical synthesis of MXenes, these 2D transition metal carbides and nitrides are terminated with a variety of functional groups, and cations such as Li+ are often used to intercalate into the structure to obtain exfoliated nanosheets. Given the various elements involved in their synthesis, it is crucial to determine the detailed chemical composition of the final product, in order to better assess and understand the relationships between composition and properties of these materials. To facilitate atom probe tomography analysis of these materials, a revised specimen preparation method is presented in this study. A colloidal Ti3C2Tz MXene solution was processed into an additive-free free-standing film and specimens were prepared using a dual beam scanning electron microscope/focused ion beam. To mechanically stabilize the fragile specimens, they were coated using an in situ sputtering technique. As various 2D material inks can be processed into such free-standing films, the presented approach is pivotal for enabling atom probe analysis of other 2D materials.

3.
Head Face Med ; 20(1): 24, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627712

RESUMO

OBJECTIVES: A randomized controlled clinical trial of dental implants was conducted to compare the clinical properties of a novel electrochemically deposited calcium phosphate coating to those of a common marketed surface treatment. MATERIAL AND METHODS: Forty implants of the same brand and type were placed in 20 fully edentulous participants requiring mandibular implantation. The two study groups were defined by the surface treatment of the implants. 20 implants in the control group were coated via a commercial electrochemical surface treatment that forms a mixture of brushite and hydroxyapatite, while the remaining 20 in the test group were coated with a novel electrochemical Smart Bioactive Trabecular Coating (SBTC®). A split-mouth design was employed, with each participants receiving one control implant in one mandibular side and a test implant in the other. To mitigate potential operator-handedness bias, control and test implants were randomly assigned to mandibular sides. All cases underwent digital planning, implant placement with a static surgical guide, and participants received locator-anchored full-arch dentures. The primary outcome was implant stability (measured using Osstell ISQ) assessed at insertion, loading, and then 3 months, 9 months, and 2 years post-insertion. The secondary outcome was bone level change (in millimeters) over the 2-year observation period. Oral health-related quality of life (OHRQL) was monitored using the OHIP-14 questionnaire. Complications and adverse events were recorded. RESULTS: Successful osseointegration and implant stability were achieved in all cases, allowing loading. ISQ values steadily increased throughout the observation period. While no significant differences were observed between the SBTC® and control coatings, the test group exhibited a higher ISQ gain. Bone resorption was somewhat lower in the SBTC® but not significantly so. Patients' OHRQL significantly improved after denture delivery and remained stable throughout the follow-up. No complications or adverse events were observed. CONCLUSIONS: Based on the study results, we conclude that the new surface treatment is a safe alternative to the widely used control surface, demonstrating similar osseointegrative properties and time-dependent bone level changes. Further research may explore the broader implications of these findings. TRIAL REGISTRATION: The study is registered on clinicaltrials.gov under the identifier ID: NCT06034171.


Assuntos
Implantes Dentários , Boca Edêntula , Humanos , Implantação Dentária Endóssea/métodos , Qualidade de Vida , Osseointegração , Resultado do Tratamento , Prótese Dentária Fixada por Implante/métodos , Planejamento de Prótese Dentária
4.
Adv Mater ; 36(3): e2305183, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37608621

RESUMO

MXenes are a family of 2D transition metal carbides and nitrides with remarkable properties, bearing great potential for energy storage and catalysis applications. However, their oxidation behavior is not yet fully understood, and there are still open questions regarding the spatial distribution and precise quantification of surface terminations, intercalated ions, and possible uncontrolled impurities incorporated during synthesis and processing. Here, atom probe tomography (APT) analysis of as-synthesized Ti3 C2 Tx MXenes reveals the presence of alkali (Li, Na) and halogen (Cl, F) elements as well as unetched Al. Following oxidation of the colloidal solution of MXenes, it is observed that the alkalis are enriched in TiO2 nanowires. Although these elements are tolerated through the incorporation by wet chemical synthesis, they are often overlooked when the activity of these materials is considered, particularly during catalytic testing. This work demonstrates how the capability of APT to image these elements in 3D at the near-atomic scale can help to better understand the activity and degradation of MXenes, in order to guide their synthesis for superior functional properties.

5.
Materials (Basel) ; 16(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38067997

RESUMO

Directed energy deposition (DED) is a crucial branch of additive manufacturing (AM), performing repairs, cladding, and processing of multi-material components. 316L austenitic stainless steel is widely used in applications such as the food, aerospace, automotive, marine, energy, biomedical, and nuclear reactor industries. Nevertheless, there is need for process parameter optimization and a comprehensive understanding of the individual and complex synergistic effects of process parameters on the geometry, microstructure, and properties of the deposited material or component. This is essential for ensuring repeatable manufacturing of parts across a single or series of platforms over time, or for minimizing defects such as porosity. In this study, the response surface methodology (RSM) and central composite design (CCD) were employed to investigate the effects of laser power, laser scan speed, and powder mass flow rate on layer thickness, density, microstructure, and microhardness of 316L steel processed by Laser Engineered Net Shaping (LENS®) DED. Polynomial empirical prediction models correlating the applied processing parameters and the studied responses were developed.

6.
Polymers (Basel) ; 15(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37688212

RESUMO

Digital light processing (DLP) is a vat photopolymerization 3D printing technique with increasingly broad application prospects, particularly in personalized medicine, such as the creation of medical devices. Different resins and printing parameters affect the functionality of these devices. One of the many problems that biomedical implants encounter is inflammation and bacteria growth. For this reason, many studies turn to the addition of antibacterial agents to either the bulk material or as a coating. Zinc oxide nanoparticles (ZnO NPs) have shown desirable properties, including antibacterial activity with negligible toxicity to the human body, allowing their use in a wide range of applications. In this project, we developed a resin of poly(ethylene glycol) diacrylate (PEGDA), a cross-linker known for its excellent mechanical properties and high biocompatibility in a 4:1 weight ratio of monomers to water. The material's mechanical properties (Young's modulus, maximum elongation, and ultimate tensile strength) were found similar to those of human cartilage. Furthermore, the ZnO NPs embedding matrix showed strong antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S.A.). As the ZnO NPs ratio was changed, only a minor effect on the mechanical properties of the material was observed, whereas strong antibacterial properties against both bacteria were achieved in the case of 1.5 wt.% NPs.

7.
Nanomaterials (Basel) ; 12(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055274

RESUMO

In order to use polymers at low Earth orbit (LEO) environment, they must be protected against atomic oxygen (AO) erosion. A promising protection strategy is to incorporate polyhedral oligomeric silsesquioxane (POSS) molecules into the polymer backbone. In this study, the space durability of epoxy-POSS (EPOSS) nanocomposites was investigated. Two types of POSS molecules were incorporated separately-amine-based and epoxy-based. The outgassing properties of the EPOSS, in terms of total mass loss, collected volatile condensable material, and water vapor regain were measured as a function of POSS type and content. The AO durability was studied using a ground-based AO simulation system. Surface compositions of EPOSS were studied using high-resolution scanning electron microscopy and X-ray photoelectron spectroscopy. It was found that with respect to the outgassing properties, only some of the EPOSS compositions were suitable for the ultrahigh vacuum space environment, and that the POSS type and content had a strong effect on their outgassing properties. Regardless of the POSS type being used, the AO durability improved significantly. This improvement is attributed to the formation of a self-passivated AO durable SiO2 layer, and demonstrates the potential use of EPOSS as a qualified nanocomposite for space applications.

8.
Materials (Basel) ; 15(2)2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35057356

RESUMO

Additively manufactured (AM) materials and hot rolled materials are typically orthotropic, and exhibit anisotropic elastic properties. This paper elucidates the anisotropic elastic properties (Young's modulus, shear modulus, and Poisson's ratio) of Ti6Al4V alloy in four different conditions: three AM (by selective laser melting, SLM, electron beam melting, EBM, and directed energy deposition, DED, processes) and one wrought alloy (for comparison). A specially designed polygon sample allowed measurement of 12 sound wave velocities (SWVs), employing the dynamic pulse-echo ultrasonic technique. In conjunction with the measured density values, these SWVs enabled deriving of the tensor of elastic constants (Cij) and the three-dimensional (3D) Young's moduli maps. Electron backscatter diffraction (EBSD) and micro-computed tomography (µCT) were employed to characterize the grain size and orientation as well as porosity and other defects which could explain the difference in the measured elastic constants of the four materials. All three types of AM materials showed only minor anisotropy. The wrought (hot rolled) alloy exhibited the highest density, virtually pore-free µCT images, and the highest ultrasonic anisotropy and polarity behavior. EBSD analysis revealed that a thin ß-phase layer that formed along the elongated grain boundaries caused the ultrasonic polarity behavior. The finding that the elastic properties depend on the manufacturing process and on the angle relative to either the rolling direction or the AM build direction should be taken into account in the design of products. The data reported herein is valuable for materials selection and finite element analyses in mechanical design. The pulse-echo measurement procedure employed in this study may be further adapted and used for quality control of AM materials and parts.

9.
Materials (Basel) ; 14(4)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572411

RESUMO

Electroless deposition on zinc and its alloys is challenging because of the negative standard potential of zinc, the formation of poor surface layers during oxidation in aqueous solutions, and extensive hydrogen evolution. Therefore, there are only few reports of electroless deposition on Zn and its alloys, neither of them on micro/nano powders. Here, we propose a two-step process that allows the formation of compact, uniform, and conformal Ni/NiP shell on Zn-based alloy microparticles without agglomeration. The process utilizes controlled galvanic displacement of Ni deposition in ethanol-based bath, followed by NiP autocatalytic deposition in an alkaline aqueous solution. The mechanism and effect of deposition conditions on the shell formation are discussed. Thermal stability and functional analysis of core-shell powder reveal a thermal storage capability of 98.5% with an encapsulation ratio of 66.5%. No significant morphological change of the core-shell powder and no apparent leakage of the ZnAl alloy through the Ni shell are evident following differential scanning calorimetry tests. Our two-step process paves the way to utilize electroless deposition for depositing metallic-based functional coatings on Zn-based bulk and powder materials.

10.
Molecules ; 25(18)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937814

RESUMO

Thermally activated shape memory polymers (SMPs) can memorize a temporary shape at low temperature and return to their permanent shape at higher temperature. These materials can be used for light and compact space deployment mechanisms. The control of transition temperature and thermomechanical properties of epoxy-based SMPs can be done using functionalized polyhedral oligomeric silsesquioxane (POSS) additives, which are also known to improve the durability to atomic oxygen in the space environment. In this study, the influence of varying amounts of two types of POSS added to epoxy-based SMPs on the shape memory effect (SME) were studied. The first type contained amine groups, whereas the second type contained epoxide groups. The curing conditions were defined using differential scanning calorimetry and glass transition temperature (Tg) measurements. Thermomechanical and SME properties were characterized using dynamic mechanical analysis. It was found that SMPs containing amine-based POSS show higher Tg, better shape fixity and faster recovery speed, while SMPs containing epoxide-based POSS have higher crosslinking density and show superior thermomechanical properties above Tg. This work demonstrates how the Tg and SME of SMPs can be controlled by the type and amount of POSS in an epoxy-based SMP nanocomposite for future space applications.


Assuntos
Compostos de Epóxi/química , Nanocompostos/química , Polímeros/química , Aminas/química , Calorimetria , Varredura Diferencial de Calorimetria , Reagentes de Ligações Cruzadas/química , Elasticidade , Resinas Epóxi , Teste de Materiais , Oxigênio/química , Estresse Mecânico , Propriedades de Superfície , Temperatura , Temperatura de Transição
11.
Materials (Basel) ; 13(18)2020 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-32961785

RESUMO

Additive manufacturing attracts much interest for manufacturing and repair of structural parts for the aerospace industry. This paper presents comparative characterization of aircraft items made of Al 4047 alloy, Ti-6Al-4V alloy, and 17-4 precipitation hardened (PH) (AISI 630) stainless steel, either manufactured or repaired by laser engineered net shaping (LENS). Chemical analysis, density, and surface roughness measurements, X-ray micro-computed tomography (µ-CT) analysis, metallography, and micro-hardness testing were conducted. In all three materials, microstructures typical of rapid solidification were observed, along with high density, chemical composition, and hardness comparable to those of the counterpart wrought alloys (even in hard condition). High standard deviation in hardness values, anisotropic geometrical distortion, and overbuild at top edges were observed. The detected defects included partially melted and unmelted powder particles, porosity, and interlayer lack of fusion, in particular at the interface between the substrate plate and the build. There was a fairly good match between the density values measured by µ-CT and those measured by the Archimedes method; there was also good correlation between the type of defects detected by both techniques. Surface roughness, density of partially melted powder particles, and the content of bulk defects were significantly higher in Al 4047 than in 17-4 PH stainless steel and Ti-6Al-4V alloy. Optical gaging can be used reliably for surface roughness measurements. The implications of these findings are discussed.

12.
Materials (Basel) ; 12(16)2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31405190

RESUMO

The use of vibratory welding is treated with some caution in the industry due to inconsistent beneficiary results. Here, a partial explanation is suggested by the differentiation between global vibrational effects (GVEs) and local vibrational effects (LVEs), and the latter is investigated experimentally. Two structural plates of steel are welded at three frequency/amplitude combinations using manual gas metal arc welding in an experimental setup that ensures only LVEs. After welding, tensile tests, microhardness tests, and metallurgical characterization are performed locally in the different welding zones and the results are compared to the non-vibrated welds. Novel use of digital image correlation (DIC) is implemented in tensile testing of welded samples, thus enabling the separate determination of local mechanical properties of the base metal, heat-affected zone and fusion zone of the same weld. LVE is found not to promote any distinct difference in weld properties, at least within the vibrational regimes studied. Nevertheless, depending on geometry and structural response, it is explained how vibratory welding may promote residual stress relief due to GVEs of the welded structure.

13.
Adv Mater ; 31(18): e1807738, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30803081

RESUMO

The space environment raises many challenges for new materials development and ground characterization. These environmental hazards in space include solar radiation, energetic particles, vacuum, micrometeoroids and debris, and space plasma. In low Earth orbits, there is also a significant concentration of highly reactive atomic oxygen (AO). This Progress Report focuses on the development of space-durable polyimide (PI)-based materials and nanocomposites and their testing under simulated space environment. Commercial PIs suffer from AO-induced erosion and surface electric charging. Modified PIs and PI-based nanocomposites are developed and tested to resist degradation in space. The durability of PIs in AO is successfully increased by addition of polyhedral oligomeric silsesquioxane. Conductive materials are prepared based on composites of PI and either carbon nanotube (CNT) sheets or 3D-graphene structures. 3D PI structures, which can expand PI space applications, made by either additive manufacturing (AM) or thermoforming, are presented. The selection of AM-processable engineering polymers in general, and PIs in particular, is relatively limited. Here, innovative preliminary results of a PI-based material processed by the PolyJet technology are presented.

14.
Materials (Basel) ; 12(3)2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30696087

RESUMO

Metallic biomaterials are used in medical devices in humans more than any other family of materials. The corrosion resistance of an implant material affects its functionality and durability and is a prime factor governing biocompatibility. The fundamental paradigm of metallic biomaterials, except biodegradable metals, has been "the more corrosion resistant, the more biocompatible." The body environment is harsh and raises several challenges with respect to corrosion control. In this invited review paper, the body environment is analysed in detail and the possible effects of the corrosion of different biomaterials on biocompatibility are discussed. Then, the kinetics of corrosion, passivity, its breakdown and regeneration in vivo are conferred. Next, the mostly used metallic biomaterials and their corrosion performance are reviewed. These biomaterials include stainless steels, cobalt-chromium alloys, titanium and its alloys, Nitinol shape memory alloy, dental amalgams, gold, metallic glasses and biodegradable metals. Then, the principles of implant failure, retrieval and failure analysis are highlighted, followed by description of the most common corrosion processes in vivo. Finally, approaches to control the corrosion of metallic biomaterials are highlighted.

15.
J Mech Behav Biomed Mater ; 91: 345-354, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30654195

RESUMO

Detecting the presence of circulating tumor cells (CTCs) in peripheral blood can be useful for monitoring treatment in patients, metastasis prognosis, and even early detection. The epidermal growth factor receptor (EGFR) is overexpressed in carcinoma, e.g. in colorectal cancer. Here, we use atomic force microscopy (AFM) force spectroscopy to study the mechanical properties of A431 cells, which simulate EGFR-overexpressing epithelial CTCs and were magnetically isolated by Bio-Ferrography (BF). BF is found useful in isolating individual cancerous cells for mechanical testing, thus avoiding cell-cell interactions. Different stages in the pre-isolation sample preparation steps (namely, cell fixation, PLL coating of the glass substrate, and immunomagnetic labeling) are found to affect the estimated Young's modulus. The BF magnetic isolation step itself does not change the elasticity of the captured cells in comparison to the pre-isolated microbeads-bound cells. The reported increase in the estimated Young's modulus between BF-isolated target cells and fixed cells that are not bound to magnetic microbeads can be used as a quantitative mechanical indicator for objective detection of CTCs. Furthermore, we report a 2.8-fold increase in the adhesion force between the AFM tip and the BF-isolated cells compared to the pre-isolated magnetic microbead-bound A431 fixed cells. This adhesion force correlation could potentially serve as an additional quantitative mechanical indicator for distinguishing between the target and background cells, without the use of cell staining assay and subjective analysis by an expert pathologist. This study demonstrates the powerful combination of the highly sensitive cell isolation by BF and the subsequent analysis of mechanical properties of individual captured cancerous cells by AFM. This combination has potential use in cancer research.


Assuntos
Fenômenos Mecânicos , Microscopia de Força Atômica , Fenômenos Biomecânicos , Linhagem Celular Tumoral , Módulo de Elasticidade , Humanos , Metástase Neoplásica
16.
Materials (Basel) ; 11(11)2018 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-30380643

RESUMO

Epoxy resins have a wide range of applications, including in corrosion protection of metals, electronics, structural adhesives, and composites. The consumption of epoxy resins is predicted to keep growing in the coming years. Unfortunately, thermoset resins cannot be recycled, and are typically not biodegradable. Hence, they pose environmental pollution risk. Here, we report degradation of epoxy resin by two bacteria that are capable of using epoxy resin as a sole carbon source. These bacteria were isolated from soil samples collected from areas around an epoxy and polyurethanes manufacturing plant. Using an array of molecular, biochemical, analytical, and microscopic techniques, they were identified as Rhodococcus rhodochrous and Ochrobactrum anthropi. As epoxy was the only carbon source available for these bacteria, their measured growth rate reflected their ability to degrade epoxy resin. Bacterial growth took place only when the two bacteria were grown together, indicating a synergistic effect. The surface morphology of the epoxy droplets changed significantly due to the biodegradation process. The metabolic pathway of epoxy by these two microbes was investigated by liquid chromatography mass spectrometry. Bisphenol A, 3,3'-((propane-2,2-diylbis(4,1-phenylene))bis(oxy))bis(propane-1,2-diol) and some other constituents were identified as being consumed by the bacteria.

17.
Nanoscale ; 10(18): 8451-8458, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29616690

RESUMO

Some articles have revealed that the electrodeposition of calcium phosphate (CaP) coatings entails a precursor phase, similarly to biomineralization in vivo. The chemical composition of the initial layer and its thickness are, however, still arguable, to the best of our knowledge. Moreover, while CaP and electrodeposition of metal coatings have been studied utilizing atom-probe tomography (APT), the electrodeposition of CaP ceramics has not been heretofore studied. Herein, we present an investigation of the CaP deposition on a gold substrate. Using APT and transmission electron microscopy (TEM) it is found that a mixture of phases, which could serve as transient precursor phases to hydroxyapatite (HAp), can be detected. The thickness of these phases is tens of nanometers, and they consist of amorphous CaP (ACP), dibasic calcium phosphate dihydrate (DCPD), and octacalcium phosphate (OCP). This demonstrates the value of using atomic-resolved characterization techniques for identifying the precursor phases. It also indicates that the kinetics of their transformation into the more stable HAp is not too fast to enable their observation. The coating gradually displays higher Ca/P atomic ratios, a porous nature, and concomitantly a change in its density.

18.
ACS Appl Mater Interfaces ; 10(13): 10860-10869, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29513511

RESUMO

Using UV-vis spectroscopy in conjunction with various electrochemical techniques, we have developed a new effective operando methodology for investigating the oxygen reduction reactions (ORRs) and their mechanisms in nonaqueous solutions. We can follow the in situ formation and presence of superoxide moieties during ORR as a function of solvent, cations, anions, and additives in the solution. Thus, using operando UV-vis spectroscopy, we found evidence for the formation of superoxide radical anions during oxygen reduction in LiTFSI/diglyme electrolyte solutions. Nitro blue tetrazolium (NBT) was used to indicate the presence of superoxide moieties based on its unique spectral response. Indeed, the spectral response of NBT containing solutions undergoing ORR could provide a direct indication for the level of association of the Li cations with the electrolyte anions.

19.
Materials (Basel) ; 10(4)2017 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-28772697

RESUMO

Calcium phosphate (CaP) bioceramics are widely used in the field of bone regeneration, both in orthopedics and in dentistry, due to their good biocompatibility, osseointegration and osteoconduction. The aim of this article is to review the history, structure, properties and clinical applications of these materials, whether they are in the form of bone cements, paste, scaffolds, or coatings. Major analytical techniques for characterization of CaPs, in vitro and in vivo tests, and the requirements of the US Food and Drug Administration (FDA) and international standards from CaP coatings on orthopedic and dental endosseous implants, are also summarized, along with the possible effect of sterilization on these materials. CaP coating technologies are summarized, with a focus on electrochemical processes. Theories on the formation of transient precursor phases in biomineralization, the dissolution and reprecipitation as bone of CaPs are discussed. A wide variety of CaPs are presented, from the individual phases to nano-CaP, biphasic and triphasic CaP formulations, composite CaP coatings and cements, functionally graded materials (FGMs), and antibacterial CaPs. We conclude by foreseeing the future of CaPs.

20.
Chem Commun (Camb) ; 53(55): 7740-7743, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28649685

RESUMO

The formation of intricately shaped crystalline minerals by organisms is orchestrated by specialized biomacromolecules. The macromolecules associated with coccoliths, nanometer-sized calcite crystal arrays produced by marine microalgae, can form a distinct calcium-rich phase via macromolecular recognition. Here, we show that this calcium-rich phase can be mineralized into a thin film of single-crystalline calcite by the balanced addition of carbonate ions. Such a crystallization process provides a strategy to direct crystalline products via local interactions between soluble macromolecules and compatible templates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...