Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Prog ; : e3451, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38450976

RESUMO

Monoclonal antibodies (mAbs) are an essential class of biotherapeutics. A platform process is used for mAb development to ensure clinically safe and stable molecules. Regulatory authorities ensure that mAb production processes include sufficient viral clearance steps to achieve less than one virus particle per million doses of product. Virus filtration is used for size-based removal of enveloped and nonenveloped viruses during downstream processing of mAbs. Process development in mAb purification relies on empirical approaches and often includes adsorptive prefiltration to mitigate virus filter fouling. Opportunities for molecular-level prediction of mAb filterability are needed to plug the existing knowledge gap in downstream processing. A molecular-level approach to understanding the factors influencing mAb filterability may reduce process development time, material loss, and processing costs due to oversized virus filters. In this work, pH step gradient fractionation was applied on polished bulk mAb feed to obtain concentrated pools of fractionated mAb variants. Biophysical properties and quality attributes of fractionated pools, including oligomeric state (size), isoelectric point profile, diffusion interaction parameters, and glycoform profile, were determined using bioanalytical methods. Filterability (loading and throughput) of fractionated pools were evaluated. Statistical methods were used to obtain correlations between quality attributes of mAb fractions and filterability on the Viresolve Pro virus filter.

2.
Biotechnol Prog ; 35(5): e2862, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31168950

RESUMO

There is growing interest within the biopharmaceutical industry to improve manufacturing efficiency through process intensification, with the goal of generating more product in less time with smaller equipment. In monoclonal antibody (mAb) purification, a unit operation that can benefit from intensification is anion exchange (AEX) polishing chromatography. Single-pass tangential flow filtration (SPTFF) technology offers an opportunity for process intensification by reducing intermediate pool volumes and increasing product concentration without recirculation. This study evaluated the performance of an AEX resin, both in terms of host cell protein (HCP) purification and viral clearance, following concentration of a mAb feed using SPTFF. Results show that preconcentration of AEX feed material improved isotherm conditions for HCP binding, resulting in a fourfold increase in resin mAb loading at the target HCP clearance level. Excellent clearance of minute virus of mouse and xenotropic murine virus was maintained at this higher load level. The increased mAb loading enabled by SPTFF preconcentration effectively reduced AEX column volume and buffer requirements, shrinking the overall size of the polishing step. In addition, the suitability of SPTFF for extended processing time operation was demonstrated, indicating that this approach can be implemented for continuous biomanufacturing. The combination of SPTFF concentration and AEX chromatography for an intensified mAb polishing step which improves both manufacturing flexibility and process productivity is supported.


Assuntos
Anticorpos Monoclonais , Cromatografia por Troca Iônica/métodos , Filtração/métodos , Resinas de Troca Aniônica/química , Ânions/química , Anticorpos Monoclonais/análise , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Desenho de Equipamento , Filtração/instrumentação , Proteínas Recombinantes/análise , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Vírus/isolamento & purificação
3.
Biotechnol Bioeng ; 113(6): 1251-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26552005

RESUMO

Effective cleaning of chromatography resin is required to prevent fouling and maximize the number of processing cycles which can be achieved. Optimization of resin cleaning procedures, however, can lead to prohibitive material, labor, and time requirements, even when using milliliter scale chromatography columns. In this work, high throughput (HT) techniques were used to evaluate cleaning agents for a monoclonal antibody (mAb) polishing step utilizing Fractogel(®) EMD TMAE HiCap (M) anion exchange (AEX) resin. For this particular mAb feed stream, the AEX resin could not be fully restored with traditional NaCl and NaOH cleaning solutions, resulting in a loss of impurity capacity with resin cycling. Miniaturized microliter scale chromatography columns and an automated liquid handling system (LHS) were employed to evaluate various experimental cleaning conditions. Cleaning agents were monitored for their ability to maintain resin impurity capacity over multiple processing cycles by analyzing the flowthrough material for turbidity and high molecular weight (HMW) content. HT experiments indicated that a 167 mM acetic acid strip solution followed by a 0.5 M NaOH, 2 M NaCl sanitization provided approximately 90% cleaning improvement over solutions containing solely NaCl and/or NaOH. Results from the microliter scale HT experiments were confirmed in subsequent evaluations at the milliliter scale. These results identify cleaning agents which may restore resin performance for applications involving fouling species in ion exchange systems. In addition, this work demonstrates the use of miniaturized columns operated with an automated LHS for HT evaluation of chromatographic cleaning procedures, effectively decreasing material requirements while simultaneously increasing throughput. Biotechnol. Bioeng. 2016;113: 1251-1259. © 2015 Wiley Periodicals, Inc.


Assuntos
Resinas de Troca Aniônica/química , Anticorpos Monoclonais/química , Cromatografia por Troca Iônica/instrumentação , Detergentes/química , Contaminação de Equipamentos/prevenção & controle , Ensaios de Triagem em Larga Escala/métodos , Resinas de Troca Aniônica/análise , Cromatografia por Troca Iônica/métodos , Detergentes/análise , Desenho de Equipamento , Análise de Falha de Equipamento , Ensaios de Triagem em Larga Escala/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...