Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Heart Assoc ; 13(12): e034990, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38842292

RESUMO

BACKGROUND: Previous studies using animal models and cultured cells suggest that vascular smooth muscle cells (SMCs) and inflammatory cytokines are important players in atherogenesis. Validating these findings in human disease is critical to designing therapeutics that target these components. Multiplex imaging is a powerful tool for characterizing cell phenotypes and microenvironments using biobanked human tissue sections. However, this technology has not been applied to human atherosclerotic lesions and needs to first be customized and validated. METHODS AND RESULTS: For validation, we created an 8-plex imaging panel to distinguish foam cells from SMC and leukocyte origins on tissue sections of early human atherosclerotic lesions (n=9). The spatial distribution and characteristics of these foam cells were further analyzed to test the association between SMC phenotypes and inflammation. Consistent with previous reports using human lesions, multiplex imaging showed that foam cells of SMC origin outnumbered those of leukocyte origin and were enriched in the deep intima, where the lipids accumulate in early atherogenesis. This new technology also found that apoptosis or the expression of pro-inflammatory cytokines were not more associated with foam cells than with nonfoam cells in early human lesions. More CD68+ SMCs were present among SMCs that highly expressed interleukin-1ß. Highly inflamed SMCs showed a trend of increased apoptosis, whereas leukocytes expressing similar levels of cytokines were enriched in regions of extracellular matrix remodeling. CONCLUSIONS: The multiplex imaging method can be applied to biobanked human tissue sections to enable proof-of-concept studies and validate theories based on animal models and cultured cells.


Assuntos
Aterosclerose , Fenótipo , Humanos , Aterosclerose/patologia , Aterosclerose/metabolismo , Aterosclerose/diagnóstico por imagem , Células Espumosas/patologia , Células Espumosas/metabolismo , Músculo Liso Vascular/patologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/metabolismo , Placa Aterosclerótica , Citocinas/metabolismo , Leucócitos/patologia , Leucócitos/metabolismo , Apoptose
2.
Front Cardiovasc Med ; 9: 948492, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35872917

RESUMO

Over the last few years, new high-throughput biotechnologies and bioinformatic methods are revolutionizing our way of deep profiling tissue specimens at the molecular levels. These recent innovations provide opportunities to advance our understanding of atherosclerosis using human lesions aborted during autopsies and cardiac surgeries. Studies on human lesions have been focusing on understanding the relationship between molecules in the lesions with tissue morphology, genetic risk of atherosclerosis, and future adverse cardiovascular events. This review will highlight ways to utilize human atherosclerotic lesions in translational research by work from large cardiovascular biobanks to tissue registries. We will also discuss the opportunities and challenges of working with human atherosclerotic lesions in the era of next-generation sequencing.

3.
Cardiovasc Res ; 118(13): 2792-2804, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34849613

RESUMO

AIMS: De-differentiation and activation of pro-inflammatory pathways are key transitions vascular smooth muscle cells (SMCs) make during atherogenesis. Here, we explored the upstream regulators of this 'atherogenic transition'. METHODS AND RESULTS: Genome-wide sequencing studies, including Assay for Transposase-Accessible Chromatin using sequencing and RNA-seq, were performed on cells isolated from both murine SMC-lineage-tracing models of atherosclerosis and human atherosclerotic lesions. At the bulk level, alterations in chromatin accessibility were associated with the atherogenic transitioning of lesional SMCs, especially in relation to genes that govern differentiation status and complement-dependent inflammation. Using computational biology, we observed that a transcription factor previously related to coronary artery disease, Activating transcription factor 3 (ATF3), was predicted to be an upstream regulator of genes altered during the transition. At the single-cell level, our results indicated that ATF3 is a key repressor of SMC transitioning towards the subset of cells that promote vascular inflammation by activating the complement cascade. The expression of ATF3 and complement component C3 was negatively correlated in SMCs from human atherosclerotic lesions, suggesting translational relevance. Phenome-wide association studies indicated that genetic variation that results in reduced expression of ATF3 is correlated with an increased risk for atherosclerosis, and the expression of ATF3 was significantly down-regulated in humans with advanced vascular disease. CONCLUSION: Our study indicates that the plasticity of atherosclerotic SMCs may in part be explained by dynamic changes in their chromatin architecture, which in turn may contribute to their maladaptive response to inflammation-induced stress.


Assuntos
Aterosclerose , Músculo Liso Vascular , Humanos , Camundongos , Animais , Músculo Liso Vascular/metabolismo , Cromatina/genética , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Miócitos de Músculo Liso/metabolismo , Aterosclerose/metabolismo , Inflamação/metabolismo
4.
Cells ; 8(12)2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31757007

RESUMO

: Engineering of functional tissue, by combining either autologous or allogeneic cells with biomaterials, holds promise for the treatment of various diseases and injuries. Prevascularization of the engineered tissue was shown to enhance and improve graft integration and neovascularization post-implantation in immunocompromised mice. However, the neovascularization and integration processes of transplanted engineered tissues have not been widely studied in immunocompetent models. Here, we fabricated a three-dimensional (3D) vascularized murine muscle construct that was transplanted into immunocompetent and immunocompromised mice. Intravital imaging demonstrated enhanced neovascularization in immunocompetent mice compared to immunocompromised mice, 18 days post-implantation, indicating the advantageous effect of an intact immune system on neovascularization. Moreover, construct prevascularization enhanced neovascularization, integration, and myogenesis in both animal models. These findings demonstrate the superiority of implantation into immunocompetent over immunocompromised mice and, therefore, suggest that using autologous cells might be beneficial compared to allogeneic cells and subsequent immunosuppression. Taken together, these observations have the potential to advance the field of regenerative medicine and tissue engineering, ultimately reducing the need for donor organs and tissues.


Assuntos
Músculos/fisiologia , Neovascularização Fisiológica/fisiologia , Engenharia Tecidual , Animais , Células Cultivadas , Técnicas de Cocultura , Camundongos , Transplante de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...