Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultrasonics ; 128: 106888, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36402114

RESUMO

BACKGROUND: Ultrasound neurostimulation (USNS) is a non-invasive neuromodulation technique that might hold promise for treating neuropsychiatric disorders with regards to its noninvasiveness, penetration depth, and high resolution. OBJECTIVE: We sought in this experimental study to provide detailed and optimized protocol and methodology for a successful ultrasonic neurostimulation of the Primary Motor Cortex (M1) in mice addressed to young researchers/students beginning their research in the field of ultrasonic neurostimulation and encountering practical challenges. METHODS: A 500 kHz single-element transducer was used for stimulating the primary motor cortex at different acoustic pressures in C57BL/6 mice at various anesthesia levels. To further illustrate the effect of anesthesia, real time visual observations of motor responses validated with video recordings as well as electromyography were employed for evaluating the success and reliability of the stimulations. RESULTS: Detailed experimental procedure for a successful stimulations including targeting and anesthesia is presented. Our study demonstrates that we can achieve high stimulation success rates (91 % to 100 %) at acoustic pressures ranging from 330 kPa to 550 kPa at anesthesia washout period. CONCLUSIONS: This study shows a reliable and detailed methodology for successful USNS in mice addressed to beginners in ultrasonic brain stimulation topic. We showed an effective USNS protocol. We offered a simple and consistent non-invasive technique for locating and targeting brain zones. Moreover, we illustrated the acoustic pressure and stimulation success relationship and focused on the effect of anesthesia level for successful stimulation.


Assuntos
Córtex Motor , Animais , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes , Ultrassom , Acústica
2.
Psychoneuroendocrinology ; 124: 105097, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33302237

RESUMO

Major depressive disorder is a common debilitating mental health problem that represents one of the leading causes of disability. Up to date, the therapeutic targets and approaches are still limited. Adult hippocampal neurogenesis (AHN) has been proposed as a critical contributor to the pathophysiology and treatment of depression, altering the hippocampal control over stress response at network, neuroendocrine and behavioral levels. These findings together have suggested that manipulating AHN may be a promising therapeutic strategy for depression. To investigate this question, we assessed whether increasing adult neurogenesis would be sufficient to produce antidepressant-like effects at behavioral and neuroendocrine levels in a mouse model of depression; the unpredictable chronic mild stress (UCMS). For this purpose, we used a bi-transgenic mouse line (iBax) in which AHN increase was induced by deletion of the pro-apoptotic gene Bax from the neural progenitors following the tamoxifen-dependent action of CreERT2 recombinases. UCMS induced a syndrome that is reminiscent of depression-like states, including anhedonia (cookie test), physical changes (coat deterioration, reduced weight gain), anxiety-like behaviors (higher latency in the novelty-supressed feeding -NSF- test), passive stress-coping behaviors (immobility in the forced swim test -FST-) and a blunted hypothalamo-pituitary-adrenal (HPA) axis reactivity to acute stress in addition to AHN decrease. Tamoxifen injection reversed the AHN decrease as well as partly counteracted UCMS effects on the cookie test and HPA axis but not for the coat state, weight gain, NSF test and FST. Taken together, our results suggest that a strategy directing at increasing AHN may be able to alleviate some depression-related behavioral and neuroendocrine dimensions of UCMS, such as anhedonia and HPA axis reactivity deficits, but may be hardly sufficient to produce a complete recovery.


Assuntos
Sistema Hipotálamo-Hipofisário , Anedonia , Animais , Comportamento Animal , Corticosterona , Depressão/tratamento farmacológico , Transtorno Depressivo Maior , Modelos Animais de Doenças , Hipocampo , Camundongos , Neurogênese , Sistema Hipófise-Suprarrenal , Estresse Psicológico , Tamoxifeno , Aumento de Peso
3.
Biochem Pharmacol ; 141: 86-99, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28800956

RESUMO

It is now well established that all clinically available antidepressants share a common aptitude: they increase the production of adult-generated neurons in the dentate gyrus of the hippocampus. This was first observed in animal models and subsequently in human populations, highlighting the clinical relevance of this finding. Later, it was suggested that hippocampal neurogenesis was not an epiphenomenal correlate of antidepressant action but was causally involved. Indeed, when neurogenesis is suppressed, antidepressant compounds can no longer achieve remission. This action of adult-born neurons seems necessary to achieve remission, but less evidence exists to show that it is sufficient alone. In the following decades, a new generation of putative antidepressants that act through different non-monoaminergic mechanisms were proposed in preclinical research as potential therapies. Interestingly, these treatments all increased neurogenesis in animal models of pathological states: this was observed with drugs acting through peptidergic or glutamatergic mechanisms and with neurostimulation strategies not targeting the hippocampus. However, the involvement of neurogenesis was not always causal. To advance further in this field, an understanding of how adult-generated neurons induce therapeutic effects and how this is related to the pathophysiology of depression are required.


Assuntos
Células-Tronco Adultas/fisiologia , Antidepressivos/farmacologia , Hipocampo/citologia , Hipocampo/fisiologia , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Células-Tronco Adultas/efeitos dos fármacos , Animais , Hipocampo/efeitos dos fármacos , Humanos , Fatores de Crescimento Neural/fisiologia , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...