Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-407148

RESUMO

Sexual dimorphisms in immune responses contribute to coronavirus disease 2019 (COVID-19) outcomes, yet the mechanisms governing this disparity remain incompletely understood. We carried out sex-balanced sampling of peripheral blood mononuclear cells from confirmed COVID-19 inpatients and outpatients, uninfected close contacts, and healthy controls for 36-color flow cytometry and single cell RNA-sequencing. Our results revealed a pronounced reduction of circulating mucosal associated invariant T (MAIT) cells in infected females. Integration of published COVID-19 airway tissue datasets implicate that this reduction represented a major wave of MAIT cell extravasation during early infection in females. Moreover, female MAIT cells possessed an immunologically active gene signature, whereas male counterparts were pro-apoptotic. Collectively, our findings uncover a female-specific protective MAIT profile, potentially shedding light on reduced COVID-19 susceptibility in females.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20155507

RESUMO

In order to elucidate novel aspects of the host response to SARS-CoV-2 we performed RNA sequencing on peripheral blood samples across 77 timepoints from 46 subjects with COVID-19 and compared them to subjects with seasonal coronavirus, influenza, bacterial pneumonia, and healthy controls. Early SARS-CoV-2 infection triggers a conserved transcriptomic response in peripheral blood that is heavily interferon-driven but also marked by indicators of early B-cell activation and antibody production. Interferon responses during SARS-CoV-2 infection demonstrate unique patterns of dysregulated expression compared to other infectious and healthy states. Heterogeneous activation of coagulation and fibrinolytic pathways are present in early COVID-19, as are IL1 and JAK/STAT signaling pathways, that persist into late disease. Classifiers based on differentially expressed genes accurately distinguished SARS-CoV-2 infection from other acute illnesses (auROC 0.95). The transcriptome in peripheral blood reveals unique aspects of the immune response in COVID-19 and provides for novel biomarker-based approaches to diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...