Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35683904

RESUMO

We report the synthesis of poly(styrene-block-lactic acid) (PS-b-PLA) copolymers with triazole rings as a junction between blocks. These materials were prepared via a 'click' strategy which involved the reaction between azide-terminated poly(styrene) (PS-N3) and acetylene-terminated poly(D,L-lactic acid) (PLA-Ac), accomplished by copper-catalyzed azide-alkyne cycloaddition reaction. This synthetic approach has demonstrated to be effective to obtain specific copolymer structures with targeted self-assembly properties. We observed the self-assembly behavior of the PS-b-PLA thin films as induced by solvent vapor annealing (SVA), thermal annealing (TA), and hydrolysis of the as-spun substrates and monitored their morphological changes by means of different microscopic techniques. Self-assembly via SVA and TA proved to be strongly dependent on the pretreatment of the substrates. Microphase segregation of the untreated films yielded a pore size of 125 nm after a 45-min SVA. After selectively removing the PLA microdomains, the as-spun substrates exhibited the formation of pores on the surface, which can be a good alternative to form an ordered pattern of triazole functionalized porous PS at the mesoscale. Finally, as revealed by scanning electron microscopy-energy dispersive X-ray spectroscopy, the obtained triazole-functionalized PS-porous film exhibited some affinity to copper (Cu) in solution. These materials are suitable candidates to further study its metal-caption properties.

2.
Polymers (Basel) ; 15(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36616474

RESUMO

In this study, the effect of single-walled carbon nanotubes (SWCNTs) on the cross-linking of natural rubber (NR) using organic peroxides was investigated. NR-SWCNTs nanocomposites were prepared in an open two-roller mill followed by vulcanization with the compression molding process. Three different organic peroxides, 1,1-bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane (T29), dicumyl peroxide (DCP), and 2,5-bis(tert-butylperoxy)-2,5-dimethyl-3-hexyne (T145), were used as vulcanizing agents. SWCNTs promote a remarkable reduction in the vulcanization time and increase the degree of cross-linking of vulcanized rubber when compared with neat or natural rubber-carbon-black composites; the same tendency was obtained in the NR-SWCNTs vulcanized with sulfur. Additionally, the mechanical performance of the NR-SWCNTs composites was significantly improved up to 75, 83, 27, and 10% for tensile strength, moduli, tear strength, and hardness. Raman spectroscopy studies evidence the occurrence of reaction between nanotube walls and free radicals generated from using organic peroxides during the vulcanization process. These results demonstrate that the incorporation of SWCNTs in combination with the use of organic peroxides for the NR vulcanization represents a potential alternative for the improvement of the physicochemical properties of NR composites.

3.
Polymers (Basel) ; 13(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34833309

RESUMO

Product miniaturization is a constant trend in industries that demand ever-smaller products that can be mass produced while maintaining high precision dimensions in the final pieces. Ultrasonic micro injection molding (UMIM) technology has emerged as a polymer processing technique capable of achieving the mass production of polymeric parts with micro-features, while still assuring replicability, repeatability, and high precision, contrary to the capabilities of conventional processing technologies of polymers. In this study, it is shown that the variation of parameters during the UMIM process, such as the amplitude of the ultrasound waves and the processing time, lead to significant modification on the molecular structure of the polymer. The variation of both the amplitude and processing time contribute to chain scission; however, the processing time is a more relevant factor for this effect as it is capable of achieving a greater chain scission in different areas of the same specimen. Further, the presence of polymorphism within the samples produced by UMIM is demonstrated. Similarly to conventional processes, the UMIM technique leads to some degree of chain orientation, despite the fact that it is carried out in a relatively small time and space. The results presented here aim to contribute to the optimization of the use of the UMIM process for the manufacture of polymeric micro parts.

4.
Materials (Basel) ; 6(7): 2873-2891, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-28811414

RESUMO

In this paper we have modified an existing material model introduced by Cantournet and co-workers to take into account softening and residual strain effects observed in polymeric materials reinforced with carbon nanotubes when subjected to loading and unloading cycles. In order to assess the accuracy of the modified material model, we have compared theoretical predictions with uniaxial extension experimental data obtained from reinforced polymeric material samples. It is shown that the proposed model follows experimental data well as its maximum errors attained are lower than 2.67%, 3.66%, 7.11% and 6.20% for brominated isobutylene and paramethylstyrene copolymer reinforced with multiwall carbon nanotubes (BIMSM-MWCNT), reinforced natural rubber (NR-MWCNT), polybutadiene-carbon black (PB-CB), and PC/ABS reinforced with single-wall carbon nanotubes (SWCNT), respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...