Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Microbiol ; 23(1): 361, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993835

RESUMO

BACKGROUND: In investigating of (exopolysaccharide) EPS from unconventional sources, lactic acid bacteria have a vital role due to their generally recognized as safe (GRAS) status. EPSs have diverse applications such as drug delivery, antimicrobial activity, surgical implants, and many more in many sectors. Despite being important, the main hindrance to the commercial application of these significant biopolymers is low productivity. Therefore, this study primarily focuses on optimizing physio-chemical conditions to maximize the previously produced EPS from probiotic Lactiplantibacillus plantarum RO30 (L. plantarum RO30) using one factor at a time (OFAT) and method Response Surface Methodology (RSM). RESULTS: The EPS obtained from L. plantarum RO30 named REPS. The medium formulation for REPS production using the OFAT method revealed that sucrose (20 g/L, beef extract (25 g/L), and ammonium sulfate at 4 g/L concentration were the optimum carbon, organic and inorganic nitrogen sources, and REPS yield was increased up to 9.11 ± 0.51 g/L. RSM experiments revealed that, a greatly significant quadratic polynomial attained from the Central Composite Design (CCD) model was fruitful for specifying the most favorable cultural conditions that have significant consequences on REPS yield. The maximal amount of REPS (10.32 g/L) was formed by: sucrose (40 g/L), beef extract (25 g/L), pH (5.5), incubation temperature (30 °C), and incubation period (72 h). A high closeness was obtained between the predicted and experimental values and it displayed the efficiency of the RSM. CONCLUSION: This study was conducted to reinforce REPS production in the probiotic LAB L. plantarum RO30 by utilizing various experimental parameters. The maximum REPS yield of 10.32 g/L was attained under the circumstances optimized in the study.


Assuntos
Lactobacillales , Probióticos , Projetos de Pesquisa , Sacarose , Extratos Vegetais
2.
World J Microbiol Biotechnol ; 38(12): 245, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36287274

RESUMO

Microbial exopolysaccharides (EPSs) extracted from lactic acid bacteria (LAB) are generally recognized as safe. They have earned popularity in recent years because of their exceptional biological features. Therefore, the present study main focus was to study EPS-production from probiotic LAB and to investigate their antioxidant and burn wound healing efficacy. Seventeen LAB were isolated from different food samples. All of them showed EPS-producing abilities ranging from 1.75 ± 0.05 to 4.32 ± 0.12 g/l. RO30 isolate (from Romi cheese) was chosen, due to its ability to produce the highest EPS yield (4.23 ± 0.12 g/l). The 16S rDNA sequencing showed it belonged to the Lactiplantibacillus plantarum group and was further identified as L. plantarum RO30 with accession number OL757866. It displayed well in vitro probiotic properties. REPS was extracted and characterized. The existence of COO-, OH and amide groups corresponding to typical EPSs was confirmed via FTIR. It was constituted of glucuronic acid, mannose, glucose, and arabinose in a molar ratio of 2.2:0.1:0.5:0.1, respectively. The average molecular weight was 4.96 × 104 g/mol. In vitro antioxidant assays showed that the REPS possesses a DPPH radical scavenging ability of 43.60% at 5 mg/ml, reducing power of 1.108 at 10 mg/ml, and iron chelation activity of 72.49% and 89.78% at 5 mg/ml and 10 mg/ml, respectively. The healing efficacy of REPS on burn wound models in albino Wistar rats showed that REPS at 0.5% (w/w) concentration stimulated the process of healing in burn areas. The results suggested that REPS might be useful as a burn wound healing agent.


Assuntos
Queimaduras , Queijo , Lactobacillus plantarum , Humanos , Queijo/microbiologia , Antioxidantes/farmacologia , Antioxidantes/química , Polissacarídeos Bacterianos/farmacologia , Arabinose , Manose , Glucose , Cicatrização , Queimaduras/tratamento farmacológico , DNA Ribossômico , Ácido Glucurônico , Amidas , Quelantes de Ferro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...