Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37050158

RESUMO

One of the main environmental stresses that hinder crop development as well as yield is salt stress, while the use of signal molecules such as calcium (Ca) has a substantial impact on reducing the detrimental effects of salt on different crop types. Therefore, a factorial pot experiment in a completely randomized design was conducted to examine the beneficial role of Ca (0, 2.5, and 5 mM) in promoting the physiological, biochemical, and growth traits of the wheat plant under three salt conditions viz. 0, 30, and 60 mM NaCl. Foliar application of Ca increased the growth of salt-stressed wheat plants through increasing photosynthetic pigments, IAA, proline, and total soluble sugars contents and improving antioxidant enzymes in addition to non-enzymatic antioxidants glutathione, phenol and flavonoids, ß-carotene, and lycopene contents, thus causing decreases in the over-accumulation of free radicals (ROS). The application of Ca increased the activity of antioxidant enzymes in wheat plants such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), which scavenge reactive oxygen species (ROS) and relieved salt stress. An additional salt tolerance mechanism by Ca increases the non-antioxidant activity of plants by accumulating osmolytes such as free amino acids, proline, and total soluble sugar, which maintain the osmotic adjustment of plants under salinity stress. Exogenous Ca application is a successful method for increasing wheat plants' ability to withstand salt stress, and it has a considerable impact on the growth of wheat under salt stress.

2.
Antioxidants (Basel) ; 11(6)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35740045

RESUMO

Ionizing radiation is abiotic stress limiting the growth and productivity of crop plants. Stigmasterol has positive effects on the plant growth of many crops. The role of stigmasterol in alleviating the effects of ionizing radiation on plant metabolism and development is still unclear. Therefore, the study aimed to investigate the effects of pretreatments with γ-radiation (0, 25, and 50 Gy), foliar application of stigmasterol (0, 100, and 200 ppm), and their interaction on the growth, and biochemical constituents of wheat (Triticum aestivum L., var. Sids 12) plants. Gamma radiation at 25 Gy showed no significant difference in plant height, root length, no. of leaves, shoot fresh weight, root fresh weight, Chl a, ABA, soluble phenols, and MDA compared to the control values. Gamma rays at 50 Gy inhibited shoot and root lengths, flag leaf area, shoot fresh and dry weights, photosynthetic pigments, total soluble sugars, proline, and peroxidase activity. However, it stimulated total phenols, catalase activity, and lipid peroxidation. On the other hand, stigmasterol at 100 ppm showed no significant effects on some of the physiological attributes compared to control plants. Stigmasterol at 200 ppm improved plant growth parameters, photosynthetic pigments, proline, phenols, antioxidant enzyme, gibberellic acid, and indole acetic acid. Correspondingly, it inhibited total soluble sugars, abscisic acid, and lipid peroxidation. Moreover, the application of stigmasterol caused the appearance of new polypeptides and the reappearance of those missed by gamma radiation. Overall, stigmasterol could alleviate the adverse effects of gamma radiation on wheat plants.

3.
Plants (Basel) ; 11(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35567220

RESUMO

Drought is the main limiting abiotic environmental stress worldwide. Water scarcity restricts the growth, development, and productivity of crops. Wheat (Triticum aestivum L.) is a fundamentally cultivated cereal crop. This study aimed to evaluate the effect of grain-priming with arginine (0.25, 0.5, and 1 mM) on growth performance and some physiological aspects of wheat plants under normal or drought-stressed conditions. Morphological growth parameters, photosynthetic pigments, soluble sugars, free amino acids, proline, total phenols, flavonoids, and proteins profiles were determined. Drought stress lowered plant growth parameters and chlorophyll a and b contents while increasing carotenoids, soluble sugars, free amino acids, proline, total phenols, and flavonoids. Soaking wheat grains with arginine (0.25, 0.5, and 1 mM) improves plant growth and mitigates the harmful effects of drought stress. The most effective treatment to alleviate the effects of drought stress on wheat plants was (1 mM) arginine, that increased root length (48.3%), leaves number (136%), shoot fresh weight (110.5%), root fresh weight (110.8%), root dry weight (107.7%), chlorophyll a (11.4%), chlorophyll b (38.7%), and carotenoids content (41.9%) compared to the corresponding control values. Arginine enhanced the synthesis of soluble sugars, proline, free amino acids, phenols, and flavonoids in wheat plants under normal or stressed conditions. Furthermore, the protein profile varies in response to drought stress and arginine pretreatments. Ultimately, pretreatment with arginine had a powerful potential to face the impacts of drought stress on wheat plants by promoting physiological and metabolic aspects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...