Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(9): 105123, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37536630

RESUMO

Distinct functions mediated by members of the monopolar spindle-one-binder (MOB) family of proteins remain elusive beyond the evolutionarily conserved and well-established roles of MOB1 (MOB1A/B) in regulating tissue homeostasis within the Hippo pathway. Since MOB proteins are adaptors, understanding how they engage in protein-protein interactions and help assemble complexes is essential to define the full scope of their biological functions. To address this, we undertook a proximity-dependent biotin identification approach to define the interactomes of all seven human MOB proteins in HeLa and human embryonic kidney 293 cell lines. We uncovered >200 interactions, of which at least 70% are unreported on BioGrid. The generated dataset reliably recalled the bona fide interactors of the well-studied MOBs. We further defined the common and differential interactome between different MOBs on a subfamily and an individual level. We discovered a unique association between MOB3C and 7 of 10 protein subunits of the RNase P complex, an endonuclease that catalyzes tRNA 5' maturation. As a proof of principle for the robustness of the generated dataset, we validated the specific interaction of MOB3C with catalytically active RNase P by using affinity purification-mass spectrometry and pre-tRNA cleavage assays of MOB3C pulldowns. In summary, our data provide novel insights into the biology of MOB proteins and reveal the first interactors of MOB3C, components of the RNase P complex, and hence an exciting nexus with RNA biology.


Assuntos
Via de Sinalização Hippo , Mapeamento de Interação de Proteínas , Proteínas Serina-Treonina Quinases , Ribonuclease P , Humanos , Células HeLa , Via de Sinalização Hippo/fisiologia , Ribonuclease P/metabolismo , Células HEK293 , Subunidades Proteicas/metabolismo
2.
Cancer Res ; 82(24): 4497-4510, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36214624

RESUMO

Multiple factors act in concert to define the fate of disseminated tumor cells (DTC) to enter dormancy or develop overt metastases. Here, we review these factors in the context of three stages of the metastatic cascade that impact DTCs. First, cells can be programmed within the primary tumor microenvironment to promote or inhibit dissemination, and the primary tumor can condition a premetastatic niche. Then, cancer cells from the primary tumor spread through hematogenous and lymphatic routes, and the primary tumor sends cues systematically to regulate the fate of DTCs. Finally, DTCs home to their metastatic site, where they are influenced by various organ-specific aspects of the new microenvironment. We discuss these factors in the context of breast cancer, where about one-third of patients develop metastatic relapse. Finally, we discuss how the standard-of-care options for breast cancer might affect the fate of DTCs.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Recidiva Local de Neoplasia/patologia , Microambiente Tumoral
3.
J Cell Biol ; 221(6)2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35482006

RESUMO

At mitotic entry, reorganization of the actomyosin cortex prompts cells to round-up. Proteins of the ezrin, radixin, and moesin family (ERM) play essential roles in this process by linking actomyosin forces to the plasma membrane. Yet, the cell-cycle signal that activates ERMs at mitotic entry is unknown. By screening a compound library using newly developed biosensors, we discovered that drugs that disassemble microtubules promote ERM activation. We further demonstrated that disassembly of interphase microtubules at mitotic entry directs ERM activation and metaphase cell rounding through GEF-H1, a Rho-GEF inhibited by microtubule binding, RhoA, and its kinase effector SLK. We finally demonstrated that GEF-H1 and Ect2, another Rho-GEF previously identified to control actomyosin forces, act together to drive activation of ERMs and cell rounding in metaphase. In summary, we report microtubule disassembly as a cell-cycle signal that controls a signaling network ensuring that actomyosin forces are efficiently integrated at the plasma membrane to promote cell rounding at mitotic entry.


Assuntos
Actomiosina , Interfase , Microtúbulos , Fatores de Troca de Nucleotídeo Guanina Rho , Actomiosina/metabolismo , Forma Celular , Células HEK293 , Humanos , Microtúbulos/metabolismo , Mitose , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo
4.
Biochim Biophys Acta Rev Cancer ; 1877(3): 188706, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35247507

RESUMO

Myoglobin (MB) belongs to the well-studied globin proteins superfamily. It has been extensively studied for its physiological roles in oxygen storage and transport for about a century now. However, the last two decades shed the light on unexpected aspects for MB research. Myoglobin has been suggested as a scavenger for nitric oxide and reactive oxygen species (ROS). Furthermore, MB was found to be expressed and regulated in different tissues, beyond the muscle lineage, including cancers. Current evidence suggest that MB is directly regulated by hypoxia and might be contributing to the metabolic rewiring in cancer tissues. In this article, we first discuss the MB physiological roles and then focus on the latter potential roles and regulatory networks of MB in cancer.


Assuntos
Mioglobina , Neoplasias , Humanos , Hipóxia , Mioglobina/metabolismo , Neoplasias/genética , Óxido Nítrico , Oxigênio/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34266948

RESUMO

Hypoxia is an important phenomenon in solid tumors that contributes to metastasis, tumor microenvironment (TME) deregulation, and resistance to therapies. The receptor tyrosine kinase AXL is an HIF target, but its roles during hypoxic stress leading to the TME deregulation are not well defined. We report here that the mammary gland-specific deletion of Axl in a HER2+ mouse model of breast cancer leads to a normalization of the blood vessels, a proinflammatory TME, and a reduction of lung metastases by dampening the hypoxic response in tumor cells. During hypoxia, interfering with AXL reduces HIF-1α levels altering the hypoxic response leading to a reduction of hypoxia-induced epithelial-to-mesenchymal transition (EMT), invasion, and production of key cytokines for macrophages behaviors. These observations suggest that inhibition of Axl generates a suitable setting to increase immunotherapy. Accordingly, combining pharmacological inhibition of Axl with anti-PD-1 in a preclinical model of HER2+ breast cancer reduces the primary tumor and metastatic burdens, suggesting a potential therapeutic approach to manage HER2+ patients whose tumors present high hypoxic features.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Imunoterapia , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/fisiopatologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Deleção de Genes , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Marcação de Genes , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Inibidores de Checkpoint Imunológico/administração & dosagem , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Metástase Neoplásica/tratamento farmacológico , Metástase Neoplásica/genética , Metástase Neoplásica/imunologia , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Proteínas Proto-Oncogênicas/imunologia , Receptores Proteína Tirosina Quinases/imunologia , Microambiente Tumoral/efeitos dos fármacos , Receptor Tirosina Quinase Axl
6.
Clin Cancer Res ; 27(20): 5465-5471, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34261697

RESUMO

The MRN complex, composed of MRE11A, RAD50, and NBN, mediates vital molecular functions to maintain genomic stability and hence protect against related disorders. Germline mutations in the MRN genes predispose to three different syndromes: ataxia-telangiectasia-like disorder (MRE11A deficiency), Nijmegen breakage syndrome (NBS; NBN deficiency), and NBS-like disorder (RAD50 deficiency). The potential cancer component of these syndromes in addition to the close physical and functional proximity of the MRN complex to BRCA1 has promoted the MRN genes as candidate risk genes for developing breast cancer. This notion has been challenged by independent large-scale population-based studies. Despite having their two-decade old candidacy as breast cancer genes close to being refuted, it has recently been reported that the MRN genes rise to have potential new roles in clonal hematopoiesis. In this article, we discuss the history and current status of MRN genes' clinical utility in breast cancer and then focus on their recently uncovered and less understood roles in clonal hematopoiesis that likely predispose to health-related disorders such as hematologic malignancies and/or cardiovascular morbid events.


Assuntos
Hidrolases Anidrido Ácido/genética , Neoplasias da Mama/etiologia , Neoplasias da Mama/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Proteína Homóloga a MRE11/genética , Mutação , Proteínas Nucleares/genética , Neoplasias da Mama/epidemiologia , Feminino , Humanos , Medição de Risco
7.
Front Oncol ; 11: 590771, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996536

RESUMO

BACKGROUND: Myoglobin (MB) is increasingly recognized as a key player in cancer growth and metastasis. Low oxygen tensions, commonly associated with highly aggressive and recurrent cancers, have been shown to regulate its expression in several cancers such as lung, neck, prostate and breast cancer. However, it is not yet known whether it contributes to the growth and spread of brain cancers especially Glioblastoma multiforme (GBM). METHODS: Here we investigate the expression of MB, and its correlation with the hypoxia markers carbonic anhydrase IX (CAIX) and lactate dehydrogenase A (LDHA), in human tissue microarrays of multiple organ tumors, brain tumors, and GBM tumors, and their respective cancer-adjacent normal tissues. Correlation between MB protein expression and tumor grade was also assessed. RESULTS: We show that MB protein is expressed in a wide variety of cancers, benign tumors, cancer-adjacent normal tissues, hyperplastic tissue samples and normal brain tissue, and low oxygen tensions modulate MB protein expression in different brain cancers, including GBM. Enhanced nuclear LDHA immune-reactivity in GBM was also observed. Finally, we report for the first time a positive correlation between MB expression and brain tumor grade. CONCLUSION: Our data suggest that hypoxia regulate MB expression in different brain cancers (including GBM) and that its expression is associated with a more aggressive phenotype as indicated by the positive correlation with the brain tumor grade. Additionally, a role for nuclear LDHA in promoting aggressive tumor phenotype is also suggested based on enhanced nuclear expression which was observed only in GBM.

8.
Sci Rep ; 11(1): 2409, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510186

RESUMO

The nuclease MRE11A is often included in genetic test panels for hereditary breast and ovarian cancer (HBOC) due to its BRCA1-related molecular function in the DNA repair pathway. However, whether MRE11A is a true predisposition gene for HBOC is still questionable. We determined to investigate this notion by dissecting the molecular genetics of the c.1516G > T;p.E506* truncating MRE11A variant, that we pinpointed in two unrelated French-Canadian (FC) HBOC patients. We performed a case-control study for the variant in ~ 2500 breast, ovarian, and endometrial cancer patients from the founder FC population of Quebec. Furthermore, we looked for the presence of second somatic alterations in the MRE11A gene in the tumors of the carriers. In summary, these investigations suggested that the identified variant is not associated with an increased risk of developing breast or ovarian cancer. We finally performed a systematic review for all the previously reported MRE11A variants in breast and ovarian cancer. We found that MRE11A germline variants annotated as pathogenic on ClinVar often lacked evidence for such classification, hence misleading the clinical management for affected patients. In summary, our report suggests the lack of clinical utility of MRE11A testing in HBOC, at least in the White/Caucasian populations.


Assuntos
Neoplasias da Mama/genética , Predisposição Genética para Doença , Proteína Homóloga a MRE11/genética , Mutação , Neoplasias Ovarianas/genética , Adulto , Alelos , Neoplasias da Mama/diagnóstico , Análise Mutacional de DNA , Feminino , Mutação em Linhagem Germinativa , Síndrome Hereditária de Câncer de Mama e Ovário/genética , Humanos , Proteína Homóloga a MRE11/metabolismo , Neoplasias Ovarianas/diagnóstico , Linhagem , Quebeque , Sequenciamento do Exoma
9.
Cell Death Dis ; 11(8): 665, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32820145

RESUMO

The proprotein convertases (PCs) are responsible for the maturation of precursor proteins, and are involved in multiple and critical biological processes. Over the past 30 years, the PCs have had great translational applications, but the physiological roles of PC7, the seventh member of the family, are still obscure. Searching for new substrates of PC7, a quantitative proteomics screen for selective enrichment of N-glycosylated polypeptides secreted from hepatic HuH7 cells identified two human type-II transmembrane proteins of unknown function(s): Cancer Susceptibility Candidate 4 (CASC4) and Golgi Phosphoprotein of 130 kDa (GPP130/GOLIM4). Concentrating on CASC4, its mutagenesis characterized the PC7/Furin-shedding site to occur at KR66↓NS, in HEK293 cells. We defined PC7 and Furin trafficking and activity, and demonstrated that CASC4 shedding occurs in acidic endosomes and/or in the trans-Golgi Network. Our data unraveled a cancer-protective role for CASC4, because siRNA silencing of endogenous CASC4 expression in the invasive triple-negative breast cancer human cell line MDA-MB-231 resulted in a significantly increased cellular migration and invasion. Conversely, MDA-MB-231 cells stably expressing CASC4 exhibited reduced migration and invasion, which can be explained by an increased number of paxillin-positive focal adhesions. This phenotypic cancer-protective role of CASC4 is reversed in cells overexpressing an optimally PC7/Furin-cleaved CASC4 mutant, or upon overexpression of the N-terminally convertase-generated membrane-bound segment. This phenotype was associated with increased formation of podosome-like structures, especially evident in cells overexpressing the N-terminal fragment. In accord, breast cancer patients' data sets show that high CASC4 and PCSK7 expression levels predict a significantly worse prognosis compared to high CASC4 but low PCSK7 levels. In conclusion, CASC4 shedding not only disrupts its anti-migratory/invasive role, but also generates a membrane-bound fragment that drastically modifies the actin cytoskeleton, resulting in an enhanced cellular migration and invasion. This phenotype might be clinically relevant in the prognosis of breast cancer patients.


Assuntos
Furina/metabolismo , Proteínas de Neoplasias/metabolismo , Subtilisinas/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Progressão da Doença , Endossomos/metabolismo , Furina/genética , Células HEK293 , Hepatócitos/metabolismo , Humanos , Proteínas de Neoplasias/genética , Pró-Proteína Convertases/metabolismo , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteômica/métodos , Subtilisinas/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
11.
Nat Cell Biol ; 22(1): 120-134, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31871319

RESUMO

Guanine nucleotide exchange factors (RhoGEFs) and GTPase-activating proteins (RhoGAPs) coordinate the activation state of the Rho family of GTPases for binding to effectors. Here, we exploited proximity-dependent biotinylation to systematically define the Rho family proximity interaction network from 28 baits to produce 9,939 high-confidence proximity interactions in two cell lines. Exploiting the nucleotide states of Rho GTPases, we revealed the landscape of interactions with RhoGEFs and RhoGAPs. We systematically defined effectors of Rho proteins to reveal candidates for classical and atypical Rho proteins. We used optogenetics to demonstrate that KIAA0355 (termed GARRE here) is a RAC1 interactor. A functional screen of RHOG candidate effectors identified PLEKHG3 as a promoter of Rac-mediated membrane ruffling downstream of RHOG. We identified that active RHOA binds the kinase SLK in Drosophila and mammalian cells to promote Ezrin-Radixin-Moesin phosphorylation. Our proximity interactions data pave the way for dissecting additional Rho signalling pathways, and the approaches described here are applicable to the Ras family.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Transdução de Sinais/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo , Sequência de Aminoácidos/fisiologia , Animais , Drosophila , Humanos , Ligação Proteica/fisiologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
12.
Glob Cardiol Sci Pract ; 2014(3): 336-49, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25780787

RESUMO

Cardiovascular diseases are the leading cause of death worldwide. Thrombosis, the formation of blood clot (thrombus) in the circulatory system obstructing the blood flow, is one of the main causes behind various ischemic arterial syndromes such as ischemic stroke and myocardial infarction, as well as vein syndromes such as deep vein thrombosis, and consequently, pulmonary emboli. Several thrombolytic agents have been developed for treating thrombosis, the most common being tissue plasminogen activator (tPA), administrated systemically or locally via IV infusion directly proximal to the thrombus, with the aim of restoring and improving the blood flow. TPA triggers the dissolution of thrombi by inducing the conversion of plasminogen to protease plasmin followed by fibrin digestion that eventually leads to clot lysis. Although tPA provides powerful thrombolytic activity, it has many shortcomings, including poor pharmacokinetic profiles, impairment of the reestablishment of normal coronary flow, and impairment of hemostasis, leading to life-threatening bleeding consequences. The bleeding consequence is ascribed to the ability of tPA to circulate throughout the body and therefore can lysis all blood clots in the circulation system, even the good ones that prevent the bleeding and promote injury repair. This review provides an overview of the different delivery approaches for tPA including: liposomes, ultrasound-triggered thrombolysis, anti-fibrin antibody-targeted tPA, camouflaged-tPA, tpA-loaded microcarriers, and nano-modulated delivery approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...