Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 288(5465): 500-3, 2000 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-10775106

RESUMO

Dramatic declines in emissions of methyl chloroform (1,1, 1-trichloroethane) resulting from the Montreal Protocol provide an unprecedented opportunity to improve our understanding of the oxidizing power of Earth's atmosphere. Atmospheric observations of this industrial gas during the late 1990s yield new insights into the global burden and distribution of the hydroxyl radical. Our results set firm upper limits on the global and Southern Hemispheric lifetimes of methyl chloroform and confirm the predominance of hydroxyl in the tropics. Our analysis suggests a global lifetime for methyl chloroform of 5.2 (+0.2, -0.3) years, a Southern Hemispheric lifetime of 4.9 (+0.2, -0.3) years, and mean annual concentrations of OH that are 15 +/- 10% higher south of the intertropical convergence zone than those north of this natural mixing boundary between the hemispheres.

2.
Science ; 272(5269): 1763-8, 1996 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-8662478

RESUMO

Airborne in situ observations of molecules with a wide range of lifetimes (methane, nitrous oxide, reactive nitrogen, ozone, chlorinated halocarbons, and halon-1211), used in a tropical tracer model, show that mid-latitude air is entrained into the tropical lower stratosphere within about 13.5 months; transport is faster in the reverse direction. Because exchange with the tropics is slower than global photochemical models generally assume, ozone at mid-latitudes appears to be more sensitive to elevated levels of industrial chlorine than is currently predicted. Nevertheless, about 45 percent of air in the tropical ascent region at 21 kilometers is of mid-latitude origin, implying that emissions from supersonic aircraft could reach the middle stratosphere.

3.
Science ; 272(5266): 1318-22, 1996 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-8662463

RESUMO

Analyses of air sampled from remote locations across the globe reveal that tropospheric chlorine attributable to anthropogenic halocarbons peaked near the beginning of 1994 and was decreasing at a rate of 25 ± 5 parts per trillion per year by mid-1995. Although bromine from halons was still increasing in mid-1995, the summed abundance of these halogens in the troposphere is decreasing. To assess the effect of this trend on stratospheric ozone, estimates of the future stratospheric abundance of ozone-depleting gases were made for mid-latitude and polar regions on the basis of these tropospheric measurements. These results suggest that the amount of reactive chlorine and bromine will reach a maximum in the stratosphere between 1997 and 1999 and will decline thereafter if limits outlined in the adjusted and amended Montreal Protocol on Substances That Deplete the Ozone Layer are not exceeded in future years.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...