Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15227, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956146

RESUMO

Methylene blue dye, being toxic, carcinogenic and non-biodegradable, poses a serious threat for human health and environmental safety. The effective and time-saving removal of such industrial dye necessitates the use of innovative technologies such as silver nanoparticle-based catalysis. Utilizing a pulsed Nd:YAG laser operating at the second harmonic generation of 532 nm with 2.6 J energy per pulse and 10 ns pulse duration, Ag nanoparticles were synthesized via an eco-friendly method with sodium dodecyl sulphate (SDS) as a capping agent. Different exposure times (15, 30, and 45 min) resulted in varying nanoparticle sizes. Characterization was achieved through UV-Vis absorption spectroscopy, scanning electron microscopy (SEM) imaging, and energy dispersive X-ray (EDX). Lorentzian fitting was used to model nanoparticle size, aligning well with SEM results. Mie's theory was applied to evaluate the absorption, scattering, and extinction cross-sectional area spectra. EDX revealed increasing Ag and carbon content with exposure time. The SDS-caped AgNPs nanoparticles were tested as catalyst for methylene blue degradation, achieving up to 92.5% removal in just 12 min with a rate constant of 0.2626 min-1, suggesting efficient and time-saving catalyst compared to previously reported Ag-based nanocatalysts.

2.
Phys Rev Lett ; 105(12): 123904, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20867643

RESUMO

We report a breakthrough in the search for versatile diffractive elements for cold neutrons. Nanoparticles are spatially arranged by holographical means in a photopolymer. These grating structures show remarkably efficient diffraction of cold neutrons up to about 50% for effective thicknesses of only 200   µm. They open up a profound perspective for next generation neutron-optical devices with the capability to tune or modulate the neutron diffraction efficiency.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(2 Pt 1): 021707, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17025452

RESUMO

We measured the angular dependence of the 0th, +/-1 st, and +/-2 nd optical diffraction orders from a 50 microm thick transmission grating recorded in a UV-curable holographic polymer-dispersed liquid crystal (HPDLC) made from commercially available constituents. The analysis was performed for two orthogonal polarizations of the probe beams. The emphasis was laid on the temperature dependence of the grating anisotropy. Above the nematic-isotropic phase transition, the grating is optically isotropic. At lower temperatures the grating strength for the optical polarization perpendicular to the grating vector decreases with decreasing temperature, while for orthogonal polarization it increases with decreasing temperature. As a consequence, a regime of diffraction with strongly overmodulated gratings is observed. Our investigations indicate that the anisotropy of the refractive-index modulation scales with the optical anisotropy of the liquid crystal medium forming the phase-separated domains. We further demonstrate that light scattering effects, which are profound only in the nematic phase, must not be neglected and can be taken into account via a Lorentzian line-shape broadening of the probing wave vector directions in the framework of the diffraction theory for anisotropic optical phase gratings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...