Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167353, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39004381

RESUMO

BACKGROUND: The growth arrest and DNA damage-inducible 45 (Gadd45) gene has been implicated in various central nervous system (CNS) functions, both normal and pathological, including aging, memory, and neurodegenerative diseases. In this study, we examined whether Gadd45A deletion triggers pathways associated with neurodegenerative diseases including Alzheimer's disease (AD). METHODS: Utilizing transcriptome data from AD-associated hippocampus samples, we identified Gadd45A as a pivotal regulator of autophagy. Comprehensive analyses, including Gene Ontology enrichment and protein-protein interaction network assessments, highlighted Cdkn1A as a significant downstream target of Gadd45A. Experimental validation confirmed Gadd45A's role in modulating Cdkn1A expression and autophagy levels in hippocampal cells. We also examined the effects of autophagy on hippocampal functions and proinflammatory cytokine secretion. Additionally, a murine model was employed to validate the importance of Gadd45A in neuroinflammation and AD pathology. RESULTS: Our study identified 20 autophagy regulatory factors associated with AD, with Gadd45A emerging as a critical regulator. Experimental findings demonstrated that Gadd45A influences hippocampal cell fate by reducing Cdkn1A expression and suppressing autophagic activity. Comparisons between wild-type (WT) and Gadd45A knockout (Gadd45A-/-) mice revealed that Gadd45A-/- mice exhibited significant cognitive impairments, including deficits in working and spatial memory, increased Tau hyperphosphorylation, and elevated levels of kinases involved in Tau phosphorylation in the hippocampus. Additionally, Gadd45A-/- mice showed significant increases in pro-inflammatory cytokines and decreases autophagy markers in the brain. Neurotrophin levels and dendritic spine length were also reduced in Gadd45A-/- mice, likely contributing to the observed cognitive deficits. CONCLUSIONS: These findings support the direct involvement of the Gadd45A gene in AD pathogenesis, and enhancing the expression of Gadd45A may represent a promising therapeutic strategy for the treatment of AD.


Assuntos
Doença de Alzheimer , Autofagia , Proteínas de Ciclo Celular , Inibidor de Quinase Dependente de Ciclina p21 , Hipocampo , Camundongos Knockout , Animais , Autofagia/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Camundongos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Humanos , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Modelos Animais de Doenças , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Camundongos Endogâmicos C57BL , Mapas de Interação de Proteínas , Proteínas GADD45
2.
J Fungi (Basel) ; 8(5)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35628703

RESUMO

Trichoderma sp. is extensively applied as a beneficial fungus for the management of plant diseases, plant growth promotion, induced resistance, and plays an important role in global sustainable agriculture. This study aimed to enhance the production of microbial xylanase in high titer from the endophytic fungus Trichoderma harzianum kj831197.1, and the cloning of xylanase genes in E. coli DH5α using a pUC19 vector. A combination of glucose, 0.1 mM, Tween 80 with lactose, and 2 mM galactose combined with malt extract boostedthe enzyme production. Xylanase production was maximized at a pH of 5.0, temp. of 30 °C, and agitation of 150 rpm in the presence of malt extract and bagasse as the best nitrogen source and waste, respectively, using submerged fermentation. The molecular weight of highly purified xylanase was 32 KDa, identified using SDS-PAGE. The xylanase gene of T. harzianum kj831197.1 was screened in fungal DNA using definite primers specified in the gene bank database. The identified region was excised using restriction enzymes HindIII and EcoRI and cloned into a pUC19 plasmid vector. Optimization of fermentation conditions improved xylanase production about 23.9-fold.The antifungal efficacy of xylanase toward different phytopathogenic fungi was determined. The highest inhibition was against Corynespora cassiicola, Alternaria sp., Fusarium oxysporum, and Botrytis fabae. This study offered an economical, simple, and efficient method using Trichoderma harzianum kj831197.1 for the production of the xylanase enzyme via the submerged fermentation method.

3.
Molecules ; 27(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35335377

RESUMO

The utilization of fermented foods with health-promoting properties is becoming more popular around the world. Consequently, kefir, a fermented milk beverage made from kefir grains, was shown in numerous studies to be a probiotic product providing significant health benefits. Herein, we assessed the antibacterial and antifungal potential of kefir against a variety of pathogenic bacteria and fungi. This study also showed the effectiveness of kefir in healing wounds in human gastric epithelial cells (GES-1) by (80.78%) compared with control (55.75%) within 48 h. The quantitative polymerase chain reaction (qPCR) results of kefir-treated HCV- or HBV- infected cells found that 200 µg/mL of kefir can eliminate 92.36% of HCV and 75.71% of HBV relative to the untreated infected cells, whereas 800 µg/mL (the highest concentration) completely eradicated HCV and HBV. Moreover, the estimated IC50 values of kefir, at which HCV and HBV were eradicated by 50%, were 63.84 ± 5.81 µg/mL and 224.02 ± 14.36 µg/mL, correspondingly. Kefir can significantly suppress the elevation of TNF-α and upregulate IL-10 and INF-γ in both treated HCV- and HBV-infected cells. High-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) analysis of kefir revealed the presence of numerous active metabolites which mainly contribute to the antimicrobial, antiviral, and immunomodulatory activities. This study demonstrated, for the first time, the anti-HBV efficacy of kefir while also illustrating the immunomodulatory impact in the treated HBV-infected cells. Accordingly, kefir represents a potent antiviral agent against both viral hepatitis C and B, as well as having antimicrobial and wound healing potential.


Assuntos
Kefir , Probióticos , Antibacterianos/análise , Antifúngicos/análise , Humanos , Kefir/análise , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA