Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1844(4): 778-84, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24534646

RESUMO

Siderophore A (SidA) is a flavin-dependent monooxygenase that catalyzes the NAD(P)H- and oxygen-dependent hydroxylation of ornithine in the biosynthesis of siderophores in Aspergillus fumigatus and is essential for virulence. SidA can utilize both NADPH or NADH for activity; however, the enzyme is selective for NADPH. Structural analysis shows that R279 interacts with the 2'-phosphate of NADPH. To probe the role of electrostatic interactions in coenzyme selectivity, R279 was mutated to both an alanine and a glutamate. The mutant proteins were active but highly uncoupled, oxidizing NADPH and producing hydrogen peroxide instead of hydroxylated ornithine. For wtSidA, the catalytic efficiency was 6-fold higher with NADPH as compared to NADH. For the R279A mutant the catalytic efficiency was the same with both coenyzmes, while for the R279E mutant the catalytic efficiency was 5-fold higher with NADH. The effects are mainly due to an increase in the KD values, as no major changes on the kcat or flavin reduction values were observed. Thus, the absence of a positive charge leads to no coenzyme selectivity while introduction of a negative charge leads to preference for NADH. Flavin fluorescence studies suggest altered interaction between the flavin and NADP⁺ in the mutant enzymes. The effects are caused by different binding modes of the coenzyme upon removal of the positive charge at position 279, as no major conformational changes were observed in the structure for R279A. The results indicate that the positive charge at position 279 is critical for tight binding of NADPH and efficient hydroxylation.


Assuntos
Arginina/química , Aspergillus fumigatus/química , Flavinas/química , Proteínas Fúngicas/química , Oxigenases de Função Mista/química , NADP/química , Ornitina/química , Alanina/química , Alanina/metabolismo , Arginina/metabolismo , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Flavinas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Hidroxilação , Cinética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , NAD/química , NAD/metabolismo , NADP/metabolismo , Ornitina/metabolismo , Oxirredução , Oxigênio/química , Oxigênio/metabolismo , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Eletricidade Estática , Especificidade por Substrato
2.
Arch Biochem Biophys ; 532(1): 46-53, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23357278

RESUMO

Flavin-dependent monooxygenase (FMO) from Methylophaga sp. strain SK1 catalyzes the NADPH- and oxygen-dependent hydroxylation of a number of xenobiotics. Reduction of the flavin cofactor by NADPH is required for activation of molecular oxygen. The role of a conserved tryptophan at position 47 was probed by site-directed mutagenesis. FMOW47A resulted in an insoluble inactive protein; in contrast, FMOW47F was soluble and active. The spectrum of the flavin in the mutant enzyme was redshifted, indicating a change in the flavin environment. The kcat values for NADPH, trimethylamine, and methimazole, decreased 5-8-fold. Primary kinetic isotope effect values were higher, indicating that hydride transfer is more rate-limiting in the mutant enzyme. This is supported by a decrease in the rate constant for flavin reduction and in the solvent kinetic isotope effect values. Results from molecular dynamics simulations show reduced flexibility in active site residues and, in particular, the nicotinamide moiety of NADP+ in FMOW47F. This was supported by thermal denaturation experiments. Together, the data suggests that W47 plays a role in maintaining the overall protein flexibility that is required for conformational changes important in hydride transfer.


Assuntos
Flavinas/metabolismo , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Piscirickettsiaceae/enzimologia , Triptofano/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Flavina-Adenina Dinucleotídeo/metabolismo , Oxigenases de Função Mista/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , NADP/metabolismo , Piscirickettsiaceae/química , Piscirickettsiaceae/genética , Piscirickettsiaceae/metabolismo , Estabilidade Proteica , Alinhamento de Sequência , Triptofano/química , Triptofano/genética
3.
J Am Chem Soc ; 134(43): 18132-8, 2012 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-23036087

RESUMO

UDP-galactopyranose mutase (UGM) plays an essential role in galactofuranose biosynthesis in microorganisms by catalyzing the conversion of UDP-galactopyranose to UDP-galactofuranose. The enzyme has gained attention recently as a promising target for the design of new antifungal, antitrypanosomal, and antileishmanial agents. Here we report the first crystal structure of UGM complexed with its redox partner NAD(P)H. Kinetic protein crystallography was used to obtain structures of oxidized Aspergillus fumigatus UGM (AfUGM) complexed with NADPH and NADH, as well as reduced AfUGM after dissociation of NADP(+). NAD(P)H binds with the nicotinamide near the FAD isoalloxazine and the ADP moiety extending toward the mobile 200s active site flap. The nicotinamide riboside binding site overlaps that of the substrate galactopyranose moiety, and thus NADPH and substrate binding are mutually exclusive. On the other hand, the pockets for the adenine of NADPH and uracil of the substrate are distinct and separated by only 6 Å, which raises the possibility of designing novel inhibitors that bind both sites. All 12 residues that contact NADP(H) are conserved among eukaryotic UGMs. Residues that form the AMP pocket are absent in bacterial UGMs, which suggests that eukaryotic and bacterial UGMs have different NADP(H) binding sites. The structures address the longstanding question of how UGM binds NAD(P)H and provide new opportunities for drug discovery.


Assuntos
Aspergillus fumigatus/enzimologia , Transferases Intramoleculares/química , NADP/química , Sítios de Ligação , Cristalografia por Raios X , Ativação Enzimática , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , NADP/metabolismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...