Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomimetics (Basel) ; 9(8)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39194475

RESUMO

Bio-inspired strategies for robotic sensing are essential for in situ manufactured sensors on the Moon. Sensors are one crucial component of robots that should be manufactured from lunar resources to industrialize the Moon at low cost. We are concerned with two classes of sensor: (a) position sensors and derivatives thereof are the most elementary of measurements; and (b) light sensing arrays provide for distance measurement within the visible waveband. Terrestrial approaches to sensor design cannot be accommodated within the severe limitations imposed by the material resources and expected manufacturing competences on the Moon. Displacement and strain sensors may be constructed as potentiometers with aluminium extracted from anorthite. Anorthite is also a source of silica from which quartz may be manufactured. Thus, piezoelectric sensors may be constructed. Silicone plastic (siloxane) is an elastomer that may be derived from lunar volatiles. This offers the prospect for tactile sensing arrays. All components of photomultiplier tubes may be constructed from lunar resources. However, the spatial resolution of photomultiplier tubes is limited so only modest array sizes can be constructed. This requires us to exploit biomimetic strategies: (i) optical flow provides the visual navigation competences of insects implemented through modest circuitry, and (ii) foveated vision trades the visual resolution deficiencies with higher resolution of pan-tilt motors enabled by micro-stepping. Thus, basic sensors may be manufactured from lunar resources. They are elementary components of robotic machines that are crucial for constructing a sustainable lunar infrastructure. Constraints imposed by the Moon may be compensated for using biomimetic strategies which are adaptable to non-Earth environments.

2.
Astrobiology ; 23(7): 756-768, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37126945

RESUMO

The search for extant microbial life will be a major focus of future astrobiology missions; however, no direct extant life detection instrumentation is included in current missions to Mars. In this study, we developed the semiautomated MicroLife detection platform that collects and processes environmental samples, detects biosignatures, and characterizes microbial activity. This platform is composed of a drill for sample collection, a redox dye colorimetric system for microbial metabolic activity detection and assessment (µMAMA [microfluidics Microbial Activity MicroAssay]), and a MinION sequencer for biosignature detection and characterization of microbial communities. The MicroLife platform was field-tested on White Glacier on Axel Heiberg Island in the Canadian high Arctic, with two extracted ice cores. The µMAMA successfully detected microbial metabolism from the ice cores within 1 day of incubation. The MinION sequencing of the ice cores and the positive µMAMA card identified a microbial community consistent with cold and oligotrophic environments. Furthermore, isolation and identification of microbial isolates from the µMAMA card corroborated the MinION sequencing. Together, these analyses support the MicroLife platform's efficacy in identifying microbes natively present in cryoenvironments and detecting their metabolic activity. Given our MicroLife platform's size and low energy requirements, it could be incorporated into a future landed platform or rovers for life detection.


Assuntos
Exobiologia , Camada de Gelo , Canadá , Regiões Árticas
3.
Biomimetics (Basel) ; 6(3)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34449537

RESUMO

We examine the prospect for employing a bio-inspired architecture for a lunar industrial ecology based on genetic regulatory networks. The lunar industrial ecology resembles a metabolic system in that it comprises multiple chemical processes interlinked through waste recycling. Initially, we examine lessons from factory organisation which have evolved into a bio-inspired concept, the reconfigurable holonic architecture. We then examine genetic regulatory networks and their application in the biological cell cycle. There are numerous subtleties that would be challenging to implement in a lunar industrial ecology but much of the essence of biological circuitry (as implemented in synthetic biology, for example) is captured by traditional electrical engineering design with emphasis on feedforward and feedback loops to implement robustness.

4.
Life (Basel) ; 11(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34440514

RESUMO

In this review, I explore a broad-based view of technologies for supporting human activities on the Moon and, where appropriate, Mars. Primarily, I assess the state of life support systems technology beginning with physicochemical processes, waste processing, bioregenerative methods, food production systems and the robotics and advanced biological technologies that support the latter. We observe that the Moon possesses in-situ resources but that these resources are of limited value in closed ecological life support systems (CELSS)-indeed, CELSS technology is most mature in recycling water and oxygen, the two resources that are abundant on the Moon. This places a premium on developing CELSS that recycle other elements that are rarified on the Moon including C and N in particular but also other elements such as P, S and K which might be challenging to extract from local resources. Although we focus on closed loop ecological life support systems, we also consider related technologies that involve the application of biological organisms to bioregenerative medical technologies and bioregenerative approaches to industrial activity on the Moon as potential future developments.

5.
Biomimetics (Basel) ; 5(3)2020 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-32722540

RESUMO

We present work in 3D printing electric motors from basic materials as the key to building a self-replicating machine to colonise the Moon. First, we explore the nature of the biological realm to ascertain its essence, particularly in relation to the origin of life when the inanimate became animate. We take an expansive view of this to ascertain parallels between the biological and the manufactured worlds. Life must have emerged from the available raw material on Earth and, similarly, a self-replicating machine must exploit and leverage the available resources on the Moon. We then examine these lessons to explore the construction of a self-replicating machine using a universal constructor. It is through the universal constructor that the actuator emerges as critical. We propose that 3D printing constitutes an analogue of the biological ribosome and that 3D printing may constitute a universal construction mechanism. Following a description of our progress in 3D printing motors, we suggest that this engineering effort can inform biology, that motors are a key facet of living organisms and illustrate the importance of motors in biology viewed from the perspective of engineering (in the Feynman spirit of "what I cannot create, I cannot understand").

6.
Biomimetics (Basel) ; 5(2)2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408615

RESUMO

We present a comprehensive tutorial review that explores the application of bio-inspired approaches to robot control systems for grappling and manipulating a wide range of space debris targets. Current robot manipulator control systems exploit limited techniques which can be supplemented by additional bio-inspired methods to provide a robust suite of robot manipulation technologies. In doing so, we review bio-inspired control methods because this will be the key to enabling such capabilities. In particular, force feedback control may be supplemented with predictive forward models and software emulation of viscoelastic preflexive joint behaviour. This models human manipulation capabilities as implemented by the cerebellum and muscles/joints respectively. In effect, we are proposing a three-level control strategy based on biomimetic forward models for predictive estimation, traditional feedback control and biomimetic muscle-like preflexes. We place emphasis on bio-inspired forward modelling suggesting that all roads lead to this solution for robust and adaptive manipulator control. This promises robust and adaptive manipulation for complex tasks in salvaging space debris.

7.
Acta Astronaut ; 56(3): 397-407, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15754476

RESUMO

We present a new European Mars mission proposal to build on the UK-led Beagle2 Mars mission and continue its astrobiology-focussed investigation of Mars. The small surface element to be delivered to the Martian surface--Vanguard--is designed to be carried by a Mars Express-type spacecraft bus to Mars and adopts a similar entry, descent and landing system as Beagle2. The surface element comprises a triad of robotic devices--a lander, a micro-rover of the Sojourner class for surface mobility, and three ground-penetrating moles mounted onto the rover for sub-surface penetration to 5 m depth. The major onboard instruments on the rover include a Raman spectrometer/imager, a laser plasma spectrometer, an infrared spectrometer--these laser instruments provide the basis for in situ "remote" sensing of the sub-surface Martian environment within a powerful scientific package. The moles carry the instruments' sensor head array to the sub-surface. The moles are thus required to undergo a one-way trip down the boreholes without the need for recovery of moles or samples, eliminating much of the robotic complexity invoked by such operations.


Assuntos
Geologia/instrumentação , Marte , Robótica , Voo Espacial/instrumentação , Astronave/instrumentação , Desenho de Equipamento , Exobiologia , Análise Espectral Raman
8.
Astrobiology ; 3(3): 565-79, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14678665

RESUMO

We provide a scientific rationale for the astrobiological investigation of Mars. We suggest that, given practical constraints, the most promising locations for the search for former life on Mars are palaeolake craters and the evaporite deposits that may reside within them. We suggest that Raman spectroscopy offers a promising tool for the detection of evidence of former (or extant) biota on Mars. In particular, we highlight the detection of hopanoids as long-lived bacterial cell wall products and photosynthetic pigments as the most promising targets. We further suggest that Raman spectroscopy as a fibre optic-based instrument lends itself to flexible planetary deployment.


Assuntos
Meio Ambiente Extraterreno , Vida , Marte , Bactérias , Meio Ambiente , Fotossíntese , Análise Espectral Raman/instrumentação , Análise Espectral Raman/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA