Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825136

RESUMO

This study aimed to evaluate the impact of heat stress on mammary epithelial cell (MEC) losses into milk, secretory mammary tissue structure, and mammary epithelial cell activity. Sixteen multiparous Holstein cows (632 ± 12 kg BW) approximately 100 d in milk housed in climate-controlled rooms were paired by body weight and randomly allocated to one of 2 treatments, heat stress (HS) or pair feeding thermoneutral (PFTN) using 2 cohorts. Each cohort was subjected to 2 periods of 4 d each. In period 1, both treatments had ad libitum access to a common total mixed ration and were exposed to a controlled daily temperature-humidity index (THI) of 64. In period 2, HS cows were exposed to controlled cyclical heat stress (THI: 74 to 80), while PFTN cows remained at 64 THI and daily dry matter intake was matched to HS. Cows were milked twice daily, and milk yield was recorded at each milking. Individual milk samples on the last day of each period were used to quantify MEC losses by flow cytometry using butyrophilin as a cell surface marker. On the final day of period 2, individual bovine mammary tissue samples were obtained for histomorphology analysis, assessment of protein abundance, and evaluation of gene expression of targets associated with cellular capacity for milk and milk component synthesis, heat response, cellular proliferation, and autophagy. Statistical analysis was performed using the GLIMMIX procedure of SAS. Milk yield was reduced by 4.3 kg by HS (n = 7) compared with PFTN (n = 8). Independent of treatment, MEC in milk averaged 174 cells/mL (2.9% of total cells). There was no difference between HS vs. PFTN cows for MEC shed or concentration in milk. Alveolar area was reduced 25% by HS, and HS had 4.1 more alveoli than PFTN. Total number of nucleated MEC per area were greater in HS (389 ± 1.05) compared with PFTN (321 ± 1.05); however, cell number per alveolus was similar between groups (25 ± 1.5 vs. 26 ± 1.4). There were no differences in relative fold expression for GLUT1, GLUT8, CSN2, CSN3, LALBA, FASN, HSPA5, and HSPA8 in HS compared with PFTN. Immunoblotting analyses showed a decrease abundance for phosphorylated STAT5 and S6K1, and an increase in LC3 II in HS compared with PFTN. These results suggest that even if milk yield differences and histological changes occur in the bovine mammary gland after 4 d of heat exposure, MEC loss into milk, nucleated MEC number per alveolus, and gene expression of nutrient transport, milk component synthesis, and heat stress related targets are unaffected. In contrast, the abundance of proteins related to protein synthesis and cell survival decreased significantly, while an upregulation of proteins associated with autophagy in HS compared with PFTN.

2.
J Dairy Sci ; 107(7): 5190-5203, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38428497

RESUMO

Heat stress (HS) is a global issue that decreases farm profits and compromises animal welfare. To distinguish between the direct and indirect effects of HS, 16 multiparous Holstein cows approximately 100 DIM were assigned to one of 2 treatments: pair fed to match HS cow intake, housed in thermoneutral conditions (PFTN, n = 8) or cyclical HS (n = 8). All cows were subjected to 2 experimental periods. Period 1 consisted of a 4 d thermoneutral period with ad libitum intake. During period 2 (P2), the HS cows were housed in cyclical HS conditions with a temperature-humidity index (THI) ranging from 76 to 80 and the PFTN cows were exposed to a constant THI of 64 for 4 d. Dry matter intake of the PFTN cows was intake matched to the HS cows. Milk yield, milk composition, rectal temperature, and respiration rate were recorded twice daily, blood was collected daily via a jugular catheter, and cows were fed twice daily. On d 3 of each period, Cr-EDTA and sucralose were orally administered and recovered via 24 h total urine collection to assess gastrointestinal permeability. All data were analyzed using the GLIMMIX procedure in SAS. The daily data collected in P1 was averaged and used as a covariate if deemed significant in the model. Heat stress decreased voluntary feed intake by 35% and increased rectal temperature and respiration rate (38.4°C vs. 39.4°C and 40 vs. 71 respirations/min, respectively). Heat stress reduced DMI by 35%, which accounted for 66% of the decrease in milk yield. The yields, and not concentrations, of milk protein, fat, and other solids were lower in the HS cows on d 4 of P2. Milk urea nitrogen was higher and plasma urea nitrogen tended to be higher on d 3 and d 4 of HS. Glucose was 7% lower in the HS cows and insulin was 71% higher in the HS cows than the PFTN cows on d 4 of P2. No difference in lipopolysaccharide-binding protein was observed. Heat stress cows produced 7 L/d more urine than PFTN cows. No differences were detected in the urine concentration or percentage of the oral dose recovered for Cr-EDTA or sucralose. In conclusion, HS was responsible for 34% of the reduction of milk yield. The elevated MUN and the tendency for elevated plasma urea nitrogen indicate a whole-body shift in nitrogen metabolism. No differences in gastrointestinal permeability or lipopolysaccharide-binding protein were observed. These results indicate that, under the conditions of this experiment, activation of the immune system by gut-derived lipopolysaccharide was not responsible for the decreased milk yield observed during HS.


Assuntos
Lactação , Leite , Animais , Bovinos , Feminino , Leite/metabolismo , Leite/química , Temperatura Alta , Trato Gastrointestinal/metabolismo , Permeabilidade
3.
JDS Commun ; 3(4): 245-249, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36338022

RESUMO

Orally administered synthetic sugars are routinely used as markers of intestinal permeability in nonruminants and young calves, but not adult ruminants, likely because of uncertainty surrounding degradation of such sugar markers (e.g., d-mannitol, sucralose, lactulose) in the rumen. The objective was to evaluate persistence of d-mannitol, sucralose, and lactulose in a closed in vitro rumen fermentation system over 48 h. The null hypothesis was that sugar concentration would not be affected by time. Rumen contents were collected and processed under anerobic conditions a total of 12 times from a ruminally cannulated lactating Holstein cow. These 12 rumen samplings reflect 4 in vitro experiments (d-mannitol, sucralose, lactulose, and d-glucose as a positive methodological control), each replicated 3 times. For each replication, filtered rumen contents and rumen buffer (1:3; vol/vol) were added to a series of six 500-mL flasks, each containing 3 filter bags. Each filter bag contained 500 mg of ground total mixed ration (94.2% dry matter; 15.2% crude protein, 40.9% neutral detergent fiber, 3.9% fat, and 6.2% ash, dry matter basis) and three 5-mm glass beads. The 6 flasks represented 0, 6, 12, 24, and 48 h time points, and a 48-h negative control flask. A single sugar was tested during each experimental replicate. Final flask concentrations of each sugar were 4.07 mg/mL d-glucose, 1.99 mg/mL d-mannitol, 2.17 mg/mL sucralose, or 3.10 mg/mL lactulose. Flasks were incubated under anerobic conditions at 39°C where they remained undisturbed until the designated time of removal (0, 6, 12, 24, or 48 h). At removal, an aliquot of each flask was removed and sugar concentration was quantified by HPLC-mass spectrometry. Data for each experiment were analyzed using an ANOVA model that included the single fixed effect of time (0, 6, 12, 24, or 48 h); flask within replicate was the random term. Lactulose was not resolved in any samples due to interfering components within the sample matrix; no lactulose data are presented. As expected, positive methodological control of glucose decreased to negligible concentrations by 6 h of in vitro incubation. d-Mannitol followed the same pattern as glucose, which was different from our hypothesis. The interpretation is that d-mannitol is degraded in the in vitro rumen culture system and, by extension, is therefore not a viable choice to use in in vivo intestinal permeability tests in adult ruminants when dosed orally. As hypothesized, sucralose concentration did not change over 48 h of incubation in a closed in vitro rumen fermentation system. This suggests feasibility of orally dosed sucralose in adult ruminants as a rumen-inert marker of intestinal permeability with subsequent analysis of biological samples (e.g., urine, blood) by HPLC-mass spectrometry.

4.
J Dairy Sci ; 105(5): 4048-4063, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35248384

RESUMO

Individualized, precision feeding of dairy cattle may contribute to profitable and sustainable dairy production. Feeding strategies targeted at optimizing efficiency of individual cows, rather than groups of animals with similar characteristics, is a logical goal of individualized precision feeding. However, algorithms designed to make feeding recommendations for specific animals are scarce. The objective of this study was to develop and test 2 algorithms designed to improve feed efficiency of individual cows by supplementing total mixed rations (TMR) with varying types and amounts of top-dressed feedstuffs. Twenty-four Holstein dairy cows were assigned to 1 of 3 treatment groups as follows: a control group fed a common TMR ad libitum, a group fed individually according to algorithm 1, and a group fed individually according to algorithm 2. Algorithm 1 used a mixed-model approach with feed efficiency as the response variable and automated measurements of production parameters and top-dress type as dependent variables. Cow was treated as a random effect, and cow by top-dress interactions were included if significant. Algorithm 2 grouped cows based on top-dress response efficiency structure using a principal components and k-means clustering. Both algorithms were trained over a 36-d experimental period immediately before testing, and were updated weekly during the 35-d testing period. Production performance responses for dry matter intake (DMI), milk yield, milk fat percentage and yield, milk protein percentage and yield, and feed efficiency were analyzed using a mixed-effects model with fixed effects for feeding algorithm, top dress, week, and the 2- and 3-way interactions among these variables. Milk protein percentage and feed efficiency were significantly affected by the 3-way interaction of top dress, algorithm, and week, and DMI tended to be affected by this 3-way interaction. Feeding algorithm did not affect milk yield, milk fat yield, or milk protein yield. However, feeding costs were reduced, and hence milk revenue increased on the algorithm-fed cows. The efficacy of feeding algorithms differed by top dress and time, and largely relied on DMI shifts to modulate feed efficiency. The net result, for the cumulative feeding groups, was that cows in the algorithm 1 and 2 groups earned over $0.45 and $0.70 more per head per day in comparison to cows on the TMR control, respectively. This study yielded 2 candidate approaches for efficiency-focused, individualized feeding recommendations. Refinement of algorithm selection, development, and training approaches are needed to maximize production parameters through individualized feeding.


Assuntos
Lactação , Rúmen , Algoritmos , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Feminino , Lactação/fisiologia , Proteínas do Leite/metabolismo , Rúmen/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...