Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Adv Mater ; 33(33): e2008052, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34165832

RESUMO

Engineering materials and devices can be damaged during their service life as a result of mechanical fatigue, punctures, electrical breakdown, and electrochemical corrosion. This damage can lead to unexpected failure during operation, which requires regular inspection, repair, and replacement of the products, resulting in additional energy consumption and cost. During operation in challenging, extreme, or harsh environments, such as those encountered in high or low temperature, nuclear, offshore, space, and deep mining environments, the robustness and stability of materials and devices are extremely important. Over recent decades, significant effort has been invested into improving the robustness and stability of materials through either structural design, the introduction of new chemistry, or improved manufacturing processes. Inspired by natural systems, the creation of self-healing materials has the potential to overcome these challenges and provide a route to achieve dynamic repair during service. Current research on self-healing polymers remains in its infancy, and self-healing behavior under harsh and extreme conditions is a particularly untapped area of research. Here, the self-healing mechanisms and performance of materials under a variety of harsh environments are discussed. An overview of polymer-based devices developed for a range of challenging environments is provided, along with areas for future research.

2.
Angew Chem Int Ed Engl ; 60(25): 13725-13736, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-33411416

RESUMO

While the fascinating field of soft machines has grown rapidly over the last two decades, the materials they are constructed from have remained largely unchanged during this time. Parallel activities have led to significant advances in the field of dynamic polymer networks, leading to the design of three-dimensionally cross-linked polymeric materials that are able to adapt and transform through stimuli-induced bond exchange. Recent work has begun to merge these two fields of research by incorporating the stimuli-responsive properties of dynamic polymer networks into soft machine components. These include dielectric elastomers, stretchable electrodes, nanogenerators, and energy storage devices. In this Minireview, we outline recent progress made in this emerging research area and discuss future directions for the field.

3.
Polymers (Basel) ; 12(4)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340183

RESUMO

Dynamic crosslinking networks based on Diels-Alder (DA) chemistry and ionic interactions were introduced to maleic anhydride modified ethylene-vinyl acetate copolymer (mEVA) via in situ melt processing. The dual dynamic crosslinking networks were characterized by temperature-dependent FTIR, and the effects on the shape memory properties of mEVA were evaluated with dynamic mechanical thermal analysis and cyclic tensile testing. A crosslinking density was achieved at 2.36 × 10-4 mol·cm-3 for DA-crosslinked mEVA; as a result, the stress at 100% extension was increased from 3.8 to 5.6 MPa, and tensile strength and elongation at break were kept as high as 30.3 MPa and 486%, respectively. The further introduction of 10 wt % zinc methacrylate increased the dynamic crosslinking density to 3.74 × 10-4 mol·cm-3 and the stress at 100% extension to 9.0 MPa, while providing a tensile strength of 28.4 MPa and strain at break of 308%. The combination of reversible DA covalent crosslinking and ionic network in mEVA enabled a fixing ratio of 76.4% and recovery ratio of 99.4%, exhibiting an enhanced shape memory performance, especially at higher temperatures. The enhanced shape memory and mechanical performance of the dual crosslinked mEVA showed promising reprocessing and recycling abilities of the end-of-life products in comparison to traditional peroxide initiated covalent crosslinked counterparts.

4.
ACS Appl Mater Interfaces ; 12(6): 7595-7604, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31944651

RESUMO

The actuation and energy-harvesting performance of dielectric elastomers are strongly related to their intrinsic electrical and mechanical properties. For future resilient smart transducers, a fast actuation response, efficient energy-harvesting performance, and mechanical robustness are key requirements. In this work, we demonstrate that poly(styrene-butadiene-styrene) (SBS) can be converted into a self-healing dielectric elastomer with high permittivity and low dielectric loss, which can be deformed to large mechanical strains; these are key requirements for actuation and energy-harvesting applications. Using a one-step click reaction at room temperature for 20 min, methyl-3-mercaptopropionate (M3M) was grafted to SBS and reached 95.2% of grafting ratios. The resultant M3M-SBS can be deformed to a high mechanical strain of 1000%, with a relative permittivity of εr = 7.5 and a low tan δ = 0.03. When used in a dielectric actuator, it can provide 9.2% strain at an electric field of 39.5 MV m-1 and can also generate an energy density of 11 mJ g-1 from energy harvesting. After being subjected to mechanical damage, the self-healed elastomer can recover 44% of its breakdown strength during energy harvesting. This work demonstrates a facile route to produce self-healing, high permittivity, and low dielectric loss elastomers for both actuation and energy harvesting, which is applicable to a wide range of diene elastomer systems.

5.
Chem Soc Rev ; 48(16): 4424-4465, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31270524

RESUMO

This review provides a detailed overview on the latest developments in the design and control of the interface in polymer based composite dielectrics for energy storage applications. The methods employed for interface design in composite systems are described for a variety of filler types and morphologies, along with novel approaches employed to build hierarchical interfaces for multi-scale control of properties. Efforts to achieve a close control of interfacial properties and geometry are then described, which includes the creation of either flexible or rigid polymer interfaces, the use of liquid crystals and developing ceramic and carbon-based interfaces with tailored electrical properties. The impact of the variety of interface structures on composite polarization and energy storage capability are described, along with an overview of existing models to understand the polarization mechanisms and quantitatively assess the potential benefits of different structures for energy storage. The applications and properties of such interface-controlled materials are then explored, along with an overview of existing challenges and practical limitations. Finally, a summary and future perspectives are provided to highlight future directions of research in this growing and important area.

6.
ACS Appl Mater Interfaces ; 10(44): 38438-38448, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30360080

RESUMO

The electromechanical properties of a thermoplastic styrene-butadiene-styrene (SBS) dielectric elastomer was intrinsically tuned by chemical grafting with polar organic groups. Methyl thioglycolate (MG) reacted with the butadiene block via a one-step thiol-ene "click" reaction under UV at 25 °C. The MG grafting ratio reached 98.5 mol % (with respect to the butadiene alkenes present) within 20 min and increased the relative permittivity to 11.4 at 103 Hz, with a low tan δ. The actuation strain of the MG-grafted SBS dielectric elastomer actuator was 10 times larger than the SBS-based actuator, and the actuation force was 4 times greater than SBS. The MG-grafted SBS demonstrated an ability to achieve both mechanical and electrical self-healing. The electrical breakdown strength recovered to 15% of its original value, and the strength and elongation at break recovered by 25 and 21%, respectively, after 3 days. The self-healing behavior was explained by the introduction of polar MG groups that reduce viscous loss and strain relaxation. The weak CH/π bonds through the partially charged (δ+) groups adjacent to the ester of MG and the δ- center of styrene enable polymer chains to reunite and recover properties. Intrinsic tuning can therefore enhance the electromechanical properties of dielectric elastomers and provides new actuator materials with self-healing mechanical and dielectric properties.

7.
Macromol Rapid Commun ; 39(18): e1800340, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30073709

RESUMO

Dielectric elastomers have the capability to be used as transducers for actuation and energy harvesting applications due to their excellent combination of large strain capability (100-400%), rapid response (10-3  s), high energy density (10-150 kJ m-3 ), low noise, and lightweight nature. However, the dielectric properties of non-polar elastomers such as dielectric permittivity εr , breakdown strength Eb , and dielectric loss ε ″, need to be enhanced for real world applications. The introduction of polar groups or structures into dielectric elastomers through covalently bonding is an attractive approach to 'intrinsically' induce a permanent polarity to the elastomers, and can eliminate the poor post-processing issues and breakdown strength of extrinsically modified materials, which have often been prepared by incorporation of fillers. This review discusses the chemical methods for modification of dielectric elastomers, such as hydrosilylation, thiol-ene click chemistry, azide click chemistry, and atom transfer radical polymerization. The effects of the type and concentration of polar groups on the dielectric and mechanical properties of the elastomers and their performance in actuation and harvesting systems are discussed. State-of-the-art developments and perspectives of modified dielectric elastomers for deformable energy generators and transducers are provided.


Assuntos
Polímeros/química , Azidas/química , Química Click , Elasticidade , Elastômeros , Eletrônica , Radicais Livres/síntese química , Radicais Livres/química , Fenômenos Mecânicos , Compostos de Sulfidrila/química
8.
ACS Appl Mater Interfaces ; 10(16): 13693-13701, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29652472

RESUMO

Carbon monoxide (CO) is both a substance hazardous to health and a side product of a number of industrial processes, such as methanol steam reforming and large-scale oxidation reactions. The separation of CO from nitrogen (N2) in industrial processes is considered to be difficult because of the similarities of their electronic structures, sizes, and physicochemical properties (e.g., boiling points). Carbon monoxide is also a major poison in fuel cells because of its adsorption onto the active sites of the catalysts. It is therefore of the utmost economic importance to discover new materials that enable effective CO capture and release under mild conditions. However, methods to specifically absorb and easily release CO in the presence of contaminants, such as water, nitrogen, carbon dioxide, and oxygen, at ambient temperature are not available. Here, we report the simple and versatile fabrication of a new class of hybrid materials that allows capture and release of carbon monoxide under mild conditions. We found that carborane-containing metal complexes encapsulated in networks made of poly(dimethylsiloxane) react with CO, even when immersed in water, leading to dramatic color and infrared signature changes. Furthermore, we found that the CO can be easily released from the materials by simply dipping the networks into an organic solvent for less than 1 min, at ambient temperature and pressure, which not only offers a straightforward recycling method, but also a new method for the "on-demand" release of carbon monoxide. We illustrated the utilization of the on-demand release of CO from the networks by carrying out a carbonylation reaction on an electron-deficient metal complex that led to the formation of the CO-adduct, with concomitant recycling of the gel. We anticipate that our sponge-like materials and scalable methodology will open up new avenues for the storage, transport, and controlled release of CO, the silent killer and a major industrial poison.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...