Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 556(7700): 219-222, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29643483

RESUMO

As pulsars lose energy, primarily in the form of magnetic dipole radiation, their rotation slows down accordingly. For some pulsars, this spin-down is interrupted by occasional abrupt spin-up events known as glitches 1 . A glitch is hypothesized to be a catastrophic release of pinned vorticity 2 that provides an exchange of angular momentum between the superfluid outer core and the crust. This is manifested by a minute alteration in the rotation rate of the neutron star and its co-rotating magnetosphere, which is revealed by an abrupt change in the timing of observed radio pulses. Measurement of the flux density, polarization and single-pulse arrival times of the glitch with high time resolution may reveal the equation of state of the crustal superfluid, its drag-to-lift ratio and the parameters that describe its friction with the crust 3 . This has not hitherto been possible because glitch events happen unpredictably. Here we report single-pulse radio observations of a glitch in the Vela pulsar, which has a rotation frequency of 11.2 hertz. The glitch was detected on 2016 December 12 at 11:36 universal time, during continuous observations of the pulsar over a period of three years. We detected sudden changes in the pulse shape coincident with the glitch event: one pulse was unusually broad, the next pulse was missing (a 'null') and the following two pulses had unexpectedly low linear polarization. This sequence was followed by a 2.6-second interval during which pulses arrived later than usual, indicating that the glitch affects the magnetosphere.

2.
Phys Rev Lett ; 107(27): 270801, 2011 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-22243297

RESUMO

The possibility of using astrophysical observations of rotational transitions in the methanol molecule to measure, or constrain temporal and spatial variations in the proton-to-electron mass ratio (µ) has recently been investigated by several groups. Here we outline some of the practical considerations of making such observations, including both the instrumental and astrophysical limitations which exist at present. This leads us to conclude that such observations are unlikely to be able to improve evidence either for, or against the presence of variations in the proton-to-electron mass ratio by more than an order of magnitude beyond current limits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...