Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Pharmacol Ther ; 115(4): 658-672, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-37716910

RESUMO

Recent breakthroughs in artificial intelligence (AI) and machine learning (ML) have ushered in a new era of possibilities across various scientific domains. One area where these advancements hold significant promise is model-informed drug discovery and development (MID3). To foster a wider adoption and acceptance of these advanced algorithms, the Innovation and Quality (IQ) Consortium initiated the AI/ML working group in 2021 with the aim of promoting their acceptance among the broader scientific community as well as by regulatory agencies. By drawing insights from workshops organized by the working group and attended by key stakeholders across the biopharma industry, academia, and regulatory agencies, this white paper provides a perspective from the IQ Consortium. The range of applications covered in this white paper encompass the following thematic topics: (i) AI/ML-enabled Analytics for Pharmacometrics and Quantitative Systems Pharmacology (QSP) Workflows; (ii) Explainable Artificial Intelligence and its Applications in Disease Progression Modeling; (iii) Natural Language Processing (NLP) in Quantitative Pharmacology Modeling; and (iv) AI/ML Utilization in Drug Discovery. Additionally, the paper offers a set of best practices to ensure an effective and responsible use of AI, including considering the context of use, explainability and generalizability of models, and having human-in-the-loop. We believe that embracing the transformative power of AI in quantitative modeling while adopting a set of good practices can unlock new opportunities for innovation, increase efficiency, and ultimately bring benefits to patients.


Assuntos
Inteligência Artificial , Descoberta de Drogas , Humanos , Aprendizado de Máquina , Algoritmos , Processamento de Linguagem Natural
2.
Front Pharmacol ; 8: 799, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163179

RESUMO

Current pharmacological therapy against atrial fibrillation (AF), the most common cardiac arrhythmia, is limited by moderate efficacy and adverse side effects including ventricular proarrhythmia and organ toxicity. One way to circumvent the former is to target ion channels that are predominantly expressed in atria vs. ventricles, such as KV1.5, carrying the ultra-rapid delayed-rectifier K+ current (IKur). Recently, we used an in silico strategy to define optimal KV1.5-targeting drug characteristics, including kinetics and state-dependent binding, that maximize AF-selectivity in human atrial cardiomyocytes in normal sinus rhythm (nSR). However, because of evidence for IKur being strongly diminished in long-standing persistent (chronic) AF (cAF), the therapeutic potential of drugs targeting IKur may be limited in cAF patients. Here, we sought to simulate the efficacy (and safety) of IKur inhibitors in cAF conditions. To this end, we utilized sensitivity analysis of our human atrial cardiomyocyte model to assess the importance of IKur for atrial cardiomyocyte electrophysiological properties, simulated hundreds of theoretical drugs to reveal those exhibiting anti-AF selectivity, and compared the results obtained in cAF with those in nSR. We found that despite being downregulated, IKur contributes more prominently to action potential (AP) and effective refractory period (ERP) duration in cAF vs. nSR, with ideal drugs improving atrial electrophysiology (e.g., ERP prolongation) more in cAF than in nSR. Notably, the trajectory of the AP during cAF is such that more IKur is available during the more depolarized plateau potential. Furthermore, IKur block in cAF has less cardiotoxic effects (e.g., AP duration not exceeding nSR values) and can increase Ca2+ transient amplitude thereby enhancing atrial contractility. We propose that in silico strategies such as that presented here should be combined with in vitro and in vivo assays to validate model predictions and facilitate the ongoing search for novel agents against AF.

4.
Chaos ; 27(9): 093918, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28964116

RESUMO

The KV1.5 potassium channel, which underlies the ultra-rapid delayed-rectifier current (IKur) and is predominantly expressed in atria vs. ventricles, has emerged as a promising target to treat atrial fibrillation (AF). However, while numerous KV1.5-selective compounds have been screened, characterized, and tested in various animal models of AF, evidence of antiarrhythmic efficacy in humans is still lacking. Moreover, current guidelines for pre-clinical assessment of candidate drugs heavily rely on steady-state concentration-response curves or IC50 values, which can overlook adverse cardiotoxic effects. We sought to investigate the effects of kinetics and state-dependent binding of IKur-targeting drugs on atrial electrophysiology in silico and reveal the ideal properties of IKur blockers that maximize anti-AF efficacy and minimize pro-arrhythmic risk. To this aim, we developed a new Markov model of IKur that describes KV1.5 gating based on experimental voltage-clamp data in atrial myocytes from patient right-atrial samples in normal sinus rhythm. We extended the IKur formulation to account for state-specificity and kinetics of KV1.5-drug interactions and incorporated it into our human atrial cell model. We simulated 1- and 3-Hz pacing protocols in drug-free conditions and with a [drug] equal to the IC50 value. The effects of binding and unbinding kinetics were determined by examining permutations of the forward (kon) and reverse (koff) binding rates to the closed, open, and inactivated states of the KV1.5 channel. We identified a subset of ideal drugs exhibiting anti-AF electrophysiological parameter changes at fast pacing rates (effective refractory period prolongation), while having little effect on normal sinus rhythm (limited action potential prolongation). Our results highlight that accurately accounting for channel interactions with drugs, including kinetics and state-dependent binding, is critical for developing safer and more effective pharmacological anti-AF options.


Assuntos
Fibrilação Atrial/fisiopatologia , Ativação do Canal Iônico/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Simulação por Computador , Átrios do Coração/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Cinética , Cadeias de Markov , Modelos Cardiovasculares , Período Refratário Eletrofisiológico/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...