Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Eng Lett ; 13(3): 485-494, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37519872

RESUMO

Injuries involving the nervous system, such as a brachial plexus palsy or traumatic brain injury, can lead to impairment in the functionality of the hand. Assistive robotics have been proposed as a possible method to improve patient outcomes in rehabilitation. The work presented here evaluates the FLEXotendon Glove-III, a 5 degree-of-freedom, voice-controlled, tendon-driven soft robotic hand exoskeleton, with two human subjects with hand impairments and four able-bodied subjects. The FLEXotendon Glove-III was evaluated on four unimpaired subjects, in conjunction with EMG sensor data, to determine the quantitative performance of the glove in applied pinch force, perturbation resistance, and exertion reduction. The exoskeleton system was also evaluated on two subjects with hand impairments, using two standardized hand function tests, the Jebsen-Taylor Hand Function Test and the Toronto Rehabilitation Institute Hand Function Test. The subjects were also presented with three qualitative questionnaires, the Capabilities of Upper Extremities Questionnaire, the Quebec User Evaluation of Satisfaction with Assistive Technology, and the Orthotics Prosthetics User Survey-Satisfaction module. From the previous design, minor design changes were made to the exoskeleton. The quick connect system was redesigned for improved performance, the number of motors was reduced to decrease overall footprint, and the entire system was placed into a compact acrylic case that can be placed into a backpack for increased portability.

2.
Biomed Eng Lett ; 13(2): 153-163, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37124112

RESUMO

Cervical spinal cord injury (SCI) can significantly impair an individual's hand functionality due to the disruption of nerve signals from the brain to the upper extremity. Robotic assistive hand exoskeletons have been proposed as a potential technology to facilitate improved patient rehabilitation outcomes, but few exoskeleton studies utilize standardized hand function tests and questionnaires to produce quantitative data regarding exoskeleton performance. This work presents the human subject case study evaluation of the FLEXotendon Glove-III, a 5 degree-of-freedom voice-controlled, tendon-driven soft robotic assistive hand exoskeleton for individuals with SCI. The exoskeleton system was evaluated in a case study with two individuals with SCI through two standardized hand function tests namely, the Jebsen-Taylor Hand Function Test and the Toronto Rehabilitation Institute Hand Function Test and three questionnaires (Capabilities of Upper Extremities Questionnaire, Orthotics Prosthetics Users Survey, Quebec User Evaluation of Satisfaction with Assistive Technology). Minor design changes were made to the exoskeleton: integrated fingertip force sensors to sense excessive grasp force, a quick connect system to expedite the exoskeleton glove swapping process between users, compact tendon tension sensors to measure tendon force for admittance control, and a redesigned smartphone app to encompass all aspects of exoskeleton use.

3.
J Biomed Mater Res B Appl Biomater ; 109(7): 973-981, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33241668

RESUMO

Bacterial infections still present a significant concern in orthopedic and dental implant failure. Previous investigations have focused on modifying the surface texture, roughness, or coating implants with antibiotics to provide enhanced anti-bacterial properties. However, they have demonstrated limited success. In this study, we attempted to engineer the titanium (Ti) alloy surface biomimetically at the nano level using alkaline hydrothermal treatment (AHT) inspired by cicada's wing structure. Two modified surfaces of Ti plates were developed using 4 and 8-hr AHT at 230°C. We found that the control plates showed a relatively smooth surface, with little artifacts on the surface. In contrast, 4-hr AHT and 8-hr AHT plates showed nano-spikes of heights around 250-350 and 100-1,250 nm, respectively, that were distributed randomly all over the surface. We found a statistically significant (p < 0.05) number of non-viable cells for both S. aureus and P. aeruginosa bacterial strains when incubated for 1 hr in a dynamic environment when compared with the control group. The 8-hr AHT groups killed 38.97% more S. aureus in static culture and 11.27% in a dynamic environment than the 4-hr AHT. Overall, the findings indicate that the nanostructures generated on titanium by the AHT showed significant bactericidal properties. We, therefore, recommend conducting alkaline hydrothermal treatment on the surfaces for future orthopedic and dental metallic implants.


Assuntos
Antibacterianos/química , Implantes Dentários/microbiologia , Nanoestruturas/química , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus aureus/crescimento & desenvolvimento , Titânio/química , Humanos , Propriedades de Superfície
4.
Appl Opt ; 59(23): 7045-7052, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32788799

RESUMO

We present a novel concept for a Thomson scattering diagnostic, based on a high-speed fiber optic spectrometer. The high-speed fiber optic spectrometer presented here translates a spectral measurement from the frequency domain into the time domain, thus requiring the use of only a single photodetector for spectral acquisition. The high temporal precision offered by the instrument gives rise to a number of advantages over traditional spectrometers, such as nearly background-free measurements and multiple uses of the same injected beam. Multiple uses of the same beam would enable greatly increased measurement rates, in the range of 10-100 MHz. The spectral range and resolution of the fiber spectrometer can be easily tailored to be optimized for the light source and experimental conditions by selecting different lengths of fiber, thus allowing for the proposed technique to exhibit high dynamic range when measuring many points simultaneously. Finally, due to the temporal separation of the background from the signal, these improvements are possible without the need for increased average input laser power.

5.
Rev Sci Instrum ; 87(11): 11E504, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910642

RESUMO

Two photon absorption laser induced fluorescence (TALIF) measurements of neutral hydrogen and its isotopes are typically calibrated by performing TALIF measurements on krypton with the same diagnostic system and using the known ratio of the absorption cross sections [K. Niemi et al., J. Phys. D 34, 2330 (2001)]. Here we present the measurements of a new calibration method based on a ground state xenon scheme for which the fluorescent emission wavelength is nearly identical to that of hydrogen, thereby eliminating chromatic effects in the collection optics and simplifying detector calibration. We determine that the ratio of the TALIF cross sections of xenon and hydrogen is 0.024 ± 0.001.

6.
Rev Sci Instrum ; 87(11): 11E506, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910664

RESUMO

Two-photon laser-induced fluorescence measurements were performed on the helicity injected torus (HIT-SI3) device to determine the density and temperature of the background neutral deuterium population. Measurements were taken in 2 ms long pulsed plasmas after the inductive helicity injectors were turned off. Attempts to measure neutrals during the main phase of the plasma were unsuccessful, likely due to the density of neutrals being below the detection threshold of the diagnostic. An unexpectedly low density of atomic deuterium was measured in the afterglow; roughly 100 times lower than the theoretical prediction of 1017 m-3. The neutral temperatures measured were on the order of 1 eV. Temporally and spatially resolved neutral density and temperature data are presented.

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(1 Pt 2): 016207, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22400643

RESUMO

Density gradients across a reaction front can lead to convective fluid motion. Stable fronts require a heavier fluid on top of a lighter one to generate convective fluid motion. On the other hand, unstable fronts can be stabilized with an opposing density gradient, where the lighter fluid is on top. In this case, we can have a stable flat front without convection or a steady convective front of a given wavelength near the onset of convection. The fronts are described with the Kuramoto-Sivashinsky equation coupled to hydrodynamics governed by Darcy's law. We obtain a dispersion relation between growth rates and perturbation wave numbers in the presence of a density discontinuity accross the front. We also analyze the effects of this density change in the transition to chaos.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...