Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Insect Sci ; 152015.
Artigo em Inglês | MEDLINE | ID: mdl-26078302

RESUMO

Ferritin is a 24-subunit molecule, made up of heavy chain (HC) and light chain (LC) subunits, which stores and controls the release of dietary iron in mammals, plants, and insects. In mosquitoes, dietary iron taken in a bloodmeal is stored inside ferritin. Our previous work has demonstrated the transport of dietary iron to the ovaries via ferritin during oogenesis. We evaluated the localization of ferritin subunits inside CCL-125 [Aedes aegypti Linnaeus (Diptera: Culicidae), yellow fever mosquito] and 4a3b [Anopheles gambiae Giles (Diptera: Culicidae), African malaria mosquito] cells under various iron treatment conditions to further elucidate the regulation of iron metabolism in these important disease vectors and to observe the dynamics of the intracellular ferritin subunits following iron administration. Deconvolution microscopy captured 3D fluorescent images of iron-treated mosquito cells to visualize the ferritin HC and LC homologue subunits (HCH and LCH, respectively) in multiple focal planes. Fluorescent probes were used to illuminate cell organelles (i.e., Golgi apparatus, lysosomes, and nuclei) while secondary probes for specific ferritin subunits demonstrated abundance and co-localization within organelles. These images will help to develop a model for the biochemical regulation of ferritin under conditions of iron exposure, and to advance novel hypotheses for the crucial role of iron in mosquito vectors.


Assuntos
Aedes/metabolismo , Anopheles/metabolismo , Ferritinas/metabolismo , Ferro/metabolismo , Aedes/citologia , Animais , Anopheles/citologia , Linhagem Celular , Feminino , Ferro/farmacologia , Larva/metabolismo , Organelas/metabolismo
2.
PLoS One ; 2(9): e931, 2007 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-17895972

RESUMO

Fragile X syndrome (FX), the most common heritable cause of mental retardation and autism, is a developmental disorder characterized by physical, cognitive, and behavioral deficits. FX results from a trinucleotide expansion mutation in the fmr1 gene that reduces levels of fragile X mental retardation protein (FMRP). Although research efforts have focused on FMRP's impact on mGluR signaling, how the loss of FMRP leads to the individual symptoms of FX is not known. Previous studies on human FX blood cells revealed alterations in the cyclic adenosine 3', 5'-monophosphate (cAMP) cascade. We tested the hypothesis that cAMP signaling is altered in the FX nervous system using three different model systems. Induced levels of cAMP in platelets and in brains of fmr1 knockout mice are substantially reduced. Cyclic AMP induction is also significantly reduced in human FX neural cells. Furthermore, cAMP production is decreased in the heads of FX Drosophila and this defect can be rescued by reintroduction of the dfmr gene. Our results indicate that a robust defect in cAMP production in FX is conserved across species and suggest that cAMP metabolism may serve as a useful biomarker in the human disease population. Reduced cAMP induction has implications for the underlying causes of FX and autism spectrum disorders. Pharmacological agents known to modulate the cAMP cascade may be therapeutic in FX patients and can be tested in these models, thus supplementing current efforts centered on mGluR signaling.


Assuntos
AMP Cíclico/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Sistema Nervoso/metabolismo , Animais , Western Blotting , Encéfalo/citologia , Encéfalo/metabolismo , Células Cultivadas , Drosophila , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Proteína do X Frágil da Deficiência Intelectual/fisiologia , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/fisiopatologia , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sistema Nervoso/patologia , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...