Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Neurobiol Aging ; 136: 23-33, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38301452

RESUMO

Biological aging is the correlated decline of multi-organ system integrity central to the etiology of many age-related diseases. A novel epigenetic measure of biological aging, DunedinPACE, is associated with cognitive dysfunction, incident dementia, and mortality. Here, we tested for associations between DunedinPACE and structural MRI phenotypes in three datasets spanning midlife to advanced age: the Dunedin Study (age=45 years), the Framingham Heart Study Offspring Cohort (mean age=63 years), and the Alzheimer's Disease Neuroimaging Initiative (mean age=75 years). We also tested four additional epigenetic measures of aging: the Horvath clock, the Hannum clock, PhenoAge, and GrimAge. Across all datasets (total N observations=3380; total N individuals=2322), faster DunedinPACE was associated with lower total brain volume, lower hippocampal volume, greater burden of white matter microlesions, and thinner cortex. Across all measures, DunedinPACE and GrimAge had the strongest and most consistent associations with brain phenotypes. Our findings suggest that single timepoint measures of multi-organ decline such as DunedinPACE could be useful for gauging nervous system health.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Idoso , Encéfalo/patologia , Envelhecimento/genética , Doença de Alzheimer/genética , Disfunção Cognitiva/patologia , Biomarcadores , Epigênese Genética
2.
Hum Brain Mapp ; 44(18): 6399-6417, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37851700

RESUMO

Mapping individual differences in brain function has been hampered by poor reliability as well as limited interpretability. Leveraging patterns of brain-wide functional connectivity (FC) offers some promise in this endeavor. In particular, a macroscale principal FC gradient that recapitulates a hierarchical organization spanning molecular, cellular, and circuit level features along a sensory-to-association cortical axis has emerged as both a parsimonious and interpretable measure of individual differences in behavior. However, the measurement reliabilities of this FC gradient have not been fully evaluated. Here, we assess the reliabilities of both global and regional principal FC gradient measures using test-retest data from the young adult Human Connectome Project (HCP-YA) and the Dunedin Study. Analyses revealed that the reliabilities of principal FC gradient measures were (1) consistently higher than those for traditional edge-wise FC measures, (2) higher for FC measures derived from general FC (GFC) in comparison with resting-state FC, and (3) higher for longer scan lengths. We additionally examined the relative utility of these principal FC gradient measures in predicting cognition and aging in both datasets as well as the HCP-aging dataset. These analyses revealed that regional FC gradient measures and global gradient range were significantly associated with aging in all three datasets, and moderately associated with cognition in the HCP-YA and Dunedin Study datasets, reflecting contractions and expansions of the cortical hierarchy, respectively. Collectively, these results demonstrate that measures of the principal FC gradient, especially derived using GFC, effectively capture a reliable feature of the human brain subject to interpretable and biologically meaningful individual variation, offering some advantages over traditional edge-wise FC measures in the search for brain-behavior associations.


Assuntos
Conectoma , Imageamento por Ressonância Magnética , Adulto Jovem , Humanos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem , Cognição , Conectoma/métodos
3.
medRxiv ; 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37732266

RESUMO

Biological aging is the correlated decline of multi-organ system integrity central to the etiology of many age-related diseases. A novel epigenetic measure of biological aging, DunedinPACE, is associated with cognitive dysfunction, incident dementia, and mortality. Here, we tested for associations between DunedinPACE and structural MRI phenotypes in three datasets spanning midlife to advanced age: the Dunedin Study (age=45 years), the Framingham Heart Study Offspring Cohort (mean age=63 years), and the Alzheimer's Disease Neuroimaging Initiative (mean age=75 years). We also tested four additional epigenetic measures of aging: the Horvath clock, the Hannum clock, PhenoAge, and GrimAge. Across all datasets (total N observations=3,380; total N individuals=2,322), faster DunedinPACE was associated with lower total brain volume, lower hippocampal volume, and thinner cortex. In two datasets, faster DunedinPACE was associated with greater burden of white matter hyperintensities. Across all measures, DunedinPACE and GrimAge had the strongest and most consistent associations with brain phenotypes. Our findings suggest that single timepoint measures of multi-organ decline such as DunedinPACE could be useful for gauging nervous system health.

4.
Neuroimage ; 276: 120173, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37201641

RESUMO

T1-weighted structural MRI is widely used to measure brain morphometry (e.g., cortical thickness and subcortical volumes). Accelerated scans as fast as one minute or less are now available but it is unclear if they are adequate for quantitative morphometry. Here we compared the measurement properties of a widely adopted 1.0 mm resolution scan from the Alzheimer's Disease Neuroimaging Initiative (ADNI = 5'12'') with two variants of highly accelerated 1.0 mm scans (compressed-sensing, CSx6 = 1'12''; and wave-controlled aliasing in parallel imaging, WAVEx9 = 1'09'') in a test-retest study of 37 older adults aged 54 to 86 (including 19 individuals diagnosed with a neurodegenerative dementia). Rapid scans produced highly reliable morphometric measures that largely matched the quality of morphometrics derived from the ADNI scan. Regions of lower reliability and relative divergence between ADNI and rapid scan alternatives tended to occur in midline regions and regions with susceptibility-induced artifacts. Critically, the rapid scans yielded morphometric measures similar to the ADNI scan in regions of high atrophy. The results converge to suggest that, for many current uses, extremely rapid scans can replace longer scans. As a final test, we explored the possibility of a 0'49'' 1.2 mm CSx6 structural scan, which also showed promise. Rapid structural scans may benefit MRI studies by shortening the scan session and reducing cost, minimizing opportunity for movement, creating room for additional scan sequences, and allowing for the repetition of structural scans to increase precision of the estimates.


Assuntos
Doença de Alzheimer , Humanos , Idoso , Doença de Alzheimer/diagnóstico , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos
5.
Cereb Cortex ; 33(13): 8218-8231, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37015900

RESUMO

Although higher-order cognitive and lower-order sensorimotor abilities are generally regarded as distinct and studied separately, there is evidence that they not only covary but also that this covariation increases across the lifespan. This pattern has been leveraged in clinical settings where a simple assessment of sensory or motor ability (e.g. hearing, gait speed) can forecast age-related cognitive decline and risk for dementia. However, the brain mechanisms underlying cognitive, sensory, and motor covariation are largely unknown. Here, we examined whether such covariation in midlife reflects variability in common versus distinct neocortical networks using individualized maps of functional topography derived from BOLD fMRI data collected in 769 45-year-old members of a population-representative cohort. Analyses revealed that variability in basic motor but not hearing ability reflected individual differences in the functional topography of neocortical networks typically supporting cognitive ability. These patterns suggest that covariation in motor and cognitive abilities in midlife reflects convergence of function in higher-order neocortical networks and that gait speed may not be simply a measure of physical function but rather an integrative index of nervous system health.


Assuntos
Disfunção Cognitiva , Neocórtex , Humanos , Neocórtex/diagnóstico por imagem , Cognição/fisiologia , Imageamento por Ressonância Magnética
6.
bioRxiv ; 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36711683

RESUMO

Although higher-order cognitive and lower-order sensorimotor abilities are generally regarded as distinct and studied separately, there is evidence that they not only covary but also that this covariation increases across the lifespan. This pattern has been leveraged in clinical settings where a simple assessment of sensory or motor ability (e.g., hearing, gait speed) can forecast age-related cognitive decline and risk for dementia. However, the brain mechanisms underlying cognitive, sensory, and motor covariation are largely unknown. Here, we examined whether such covariation in midlife reflects variability in common versus distinct neocortical networks using individualized maps of functional topography derived from BOLD fMRI data collected in 769 45-year old members of a population-representative cohort. Analyses revealed that variability in basic motor but not hearing ability reflected individual differences in the functional topography of neocortical networks typically supporting cognitive ability. These patterns suggest that covariation in motor and cognitive abilities in midlife reflects convergence of function in higher-order neocortical networks and that gait speed may not be simply a measure of physical function but rather an integrative index of nervous system health.

7.
medRxiv ; 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38234845

RESUMO

Measurement error limits the statistical power to detect group differences and longitudinal change in structural MRI morphometric measures (e.g., hippocampal volume, prefrontal thickness). Recent advances in scan acceleration enable extremely fast T1-weighted scans (~1 minute) to achieve morphometric errors that are close to the errors in longer traditional scans. As acceleration allows multiple scans to be acquired in rapid succession, it becomes possible to pool estimates to increase measurement precision, a strategy known as "cluster scanning." Here we explored brain morphometry using cluster scanning in a test-retest study of 40 individuals (12 younger adults, 18 cognitively unimpaired older adults, and 10 adults diagnosed with mild cognitive impairment or Alzheimer's Dementia). Morphometric errors from a single compressed sensing (CS) 1.0mm scan with 6x acceleration (CSx6) were, on average, 12% larger than a traditional scan using the Alzheimer's Disease Neuroimaging Initiative (ADNI) protocol. Pooled estimates from four clustered CSx6 acquisitions led to errors that were 34% smaller than ADNI despite having a shorter total acquisition time. Given a fixed amount of time, a gain in measurement precision can thus be achieved by acquiring multiple rapid scans instead of a single traditional scan. Errors were further reduced when estimates were pooled from eight CSx6 scans (51% smaller than ADNI). Neither pooling across a break nor pooling across multiple scan resolutions boosted this benefit. We discuss the potential of cluster scanning to improve morphometric precision, boost statistical power, and produce more sensitive disease progression biomarkers.

8.
Brain Commun ; 4(5): fcac223, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213312

RESUMO

Knowledge of a person's risk for Alzheimer's disease and related dementias (ADRDs) is required to triage candidates for preventive interventions, surveillance, and treatment trials. ADRD risk indexes exist for this purpose, but each includes only a subset of known risk factors. Information missing from published indexes could improve risk prediction. In the Dunedin Study of a population-representative New Zealand-based birth cohort followed to midlife (N = 938, 49.5% female), we compared associations of four leading risk indexes with midlife antecedents of ADRD against a novel benchmark index comprised of nearly all known ADRD risk factors, the Dunedin ADRD Risk Benchmark (DunedinARB). Existing indexes included the Cardiovascular Risk Factors, Aging, and Dementia index (CAIDE), LIfestyle for BRAin health index (LIBRA), Australian National University Alzheimer's Disease Risk Index (ANU-ADRI), and risks selected by the Lancet Commission on Dementia. The Dunedin benchmark was comprised of 48 separate indicators of risk organized into 10 conceptually distinct risk domains. Midlife antecedents of ADRD treated as outcome measures included age-45 measures of brain structural integrity [magnetic resonance imaging-assessed: (i) machine-learning-algorithm-estimated brain age, (ii) log-transformed volume of white matter hyperintensities, and (iii) mean grey matter volume of the hippocampus] and measures of brain functional integrity [(i) objective cognitive function assessed via the Wechsler Adult Intelligence Scale-IV, (ii) subjective problems in everyday cognitive function, and (iii) objective cognitive decline measured as residualized change in cognitive scores from childhood to midlife on matched Weschler Intelligence scales]. All indexes were quantitatively distributed and proved informative about midlife antecedents of ADRD, including algorithm-estimated brain age (ß's from 0.16 to 0.22), white matter hyperintensities volume (ß's from 0.16 to 0.19), hippocampal volume (ß's from -0.08 to -0.11), tested cognitive deficits (ß's from -0.36 to -0.49), everyday cognitive problems (ß's from 0.14 to 0.38), and longitudinal cognitive decline (ß's from -0.18 to -0.26). Existing indexes compared favourably to the comprehensive benchmark in their association with the brain structural integrity measures but were outperformed in their association with the functional integrity measures, particularly subjective cognitive problems and tested cognitive decline. Results indicated that existing indexes could be improved with targeted additions, particularly of measures assessing socioeconomic status, physical and sensory function, epigenetic aging, and subjective overall health. Existing premorbid ADRD risk indexes perform well in identifying linear gradients of risk among members of the general population at midlife, even when they include only a small subset of potential risk factors. They could be improved, however, with targeted additions to more holistically capture the different facets of risk for this multiply determined, age-related disease.

9.
Neurology ; 99(13): e1402-e1413, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-35794023

RESUMO

BACKGROUND AND OBJECTIVES: DNA methylation algorithms are increasingly used to estimate biological aging; however, how these proposed measures of whole-organism biological aging relate to aging in the brain is not known. We used data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the Framingham Heart Study (FHS) Offspring Cohort to test the association between blood-based DNA methylation measures of biological aging and cognitive impairment and dementia in older adults. METHODS: We tested 3 "generations" of DNA methylation age algorithms (first generation: Horvath and Hannum clocks; second generation: PhenoAge and GrimAge; and third generation: DunedinPACE, Dunedin Pace of Aging Calculated from the Epigenome) against the following measures of cognitive impairment in ADNI: clinical diagnosis of dementia and mild cognitive impairment, scores on Alzheimer disease (AD) / Alzheimer disease and related dementias (ADRD) screening tests (Alzheimer's Disease Assessment Scale, Mini-Mental State Examination, and Montreal Cognitive Assessment), and scores on cognitive tests (Rey Auditory Verbal Learning Test, Logical Memory test, and Trail Making Test). In an independent replication in the FHS Offspring Cohort, we further tested the longitudinal association between the DNA methylation algorithms and the risk of developing dementia. RESULTS: In ADNI (N = 649 individuals), the first-generation (Horvath and Hannum DNA methylation age clocks) and the second-generation (PhenoAge and GrimAge) DNA methylation measures of aging were not consistently associated with measures of cognitive impairment in older adults. By contrast, a third-generation measure of biological aging, DunedinPACE, was associated with clinical diagnosis of Alzheimer disease (beta [95% CI] = 0.28 [0.08-0.47]), poorer scores on Alzheimer disease/ADRD screening tests (beta [Robust SE] = -0.10 [0.04] to 0.08[0.04]), and cognitive tests (beta [Robust SE] = -0.12 [0.04] to 0.10 [0.03]). The association between faster pace of aging, as measured by DunedinPACE, and risk of developing dementia was confirmed in a longitudinal analysis of the FHS Offspring Cohort (N = 2,264 individuals, hazard ratio [95% CI] = 1.27 [1.07-1.49]). DISCUSSION: Third-generation blood-based DNA methylation measures of aging could prove valuable for measuring differences between individuals in the rate at which they age and in their risk for cognitive decline, and for evaluating interventions to slow aging.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Idoso , Envelhecimento/genética , Doença de Alzheimer/complicações , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Disfunção Cognitiva/complicações , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/genética , Metilação de DNA , Humanos , Testes Neuropsicológicos
10.
Clin Psychol Sci ; 10(3): 584-592, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35602542

RESUMO

Past research on the brain correlates of trait anger has been limited by small sample sizes, a focus on relatively few regions-of-interest, and poor test-retest reliability of functional brain measures. To address these limitations, we conducted a data-driven analysis of variability in connectome-wide functional connectivity in a sample of 1,048 young adult volunteers. Multi-dimensional matrix regression analysis showed that self-reported trait anger maps onto variability in the whole-brain functional connectivity patterns of three brain regions that serve action-related functions: bilateral supplementary motor area (SMA) and the right lateral frontal pole. We then demonstrate trait anger modulates the functional connectivity of these regions with canonical brain networks supporting somatomotor, affective, self-referential, and visual information processes. Our findings offer novel neuroimaging evidence for interpreting trait anger as a greater propensity to provoked action, supporting ongoing efforts to understand its utility as a potential transdiagnostic marker for disordered states characterized by aggressive behavior.

11.
Trends Cogn Sci ; 25(9): 776-787, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34134933

RESUMO

fMRI has considerable potential as a translational tool for understanding risk, prioritizing interventions, and improving the treatment of brain disorders. However, recent studies have found that many of the most widely used fMRI measures have low reliability, undermining this potential. Here, we argue that many fMRI measures are unreliable because they were designed to identify group effects, not to precisely quantify individual differences. We then highlight four emerging strategies [extended aggregation, reliability modeling, multi-echo fMRI (ME-fMRI), and stimulus design] that build on established psychometric properties to generate more precise and reliable fMRI measures. By adopting such strategies to improve reliability, we are optimistic that fMRI can fulfill its potential as a clinical tool.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Humanos , Individualidade , Reprodutibilidade dos Testes
12.
Biol Psychiatry ; 90(3): 182-193, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33952400

RESUMO

BACKGROUND: Childhood adversity has been previously associated with alterations in brain structure, but heterogeneous designs, methods, and measures have contributed to mixed results and have impeded progress in mapping the biological embedding of childhood adversity. We sought to identify long-term differences in structural brain integrity associated with childhood adversity. METHODS: Multiple regression was used to test associations between prospectively ascertained adversity during childhood and adversity retrospectively reported in adulthood with structural magnetic resonance imaging measures of midlife global and regional cortical thickness, cortical surface area, and subcortical gray matter volume in 861 (425 female) members of the Dunedin Study, a longitudinal investigation of a population-representative birth cohort. RESULTS: Both prospectively ascertained childhood adversity and retrospectively reported adversity were associated with alterations in midlife structural brain integrity, but associations with prospectively ascertained childhood adversity were consistently stronger and more widely distributed than associations with retrospectively reported childhood adversity. Sensitivity analyses revealed that these associations were not driven by any particular adversity or category of adversity (i.e., threat or deprivation) or by childhood socioeconomic disadvantage. Network enrichment analyses revealed that these associations were not localized but were broadly distributed along a hierarchical cortical gradient of information processing. CONCLUSIONS: Exposure to childhood adversity broadly is associated with widespread differences in midlife gray matter across cortical and subcortical structures, suggesting that biological embedding of childhood adversity in the brain is long lasting, but not localized. Research using retrospectively reported adversity likely underestimates the magnitude of these associations. These findings may inform future research investigating mechanisms through which adversity becomes embedded in the brain and influences mental health and cognition.


Assuntos
Experiências Adversas da Infância , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Substância Cinzenta , Humanos , Imageamento por Ressonância Magnética , Estudos Retrospectivos
13.
Nat Aging ; 1(3): 295-308, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33796868

RESUMO

Some humans age faster than others. Variation in biological aging can be measured in midlife, but the implications of this variation are poorly understood. We tested associations between midlife biological aging and indicators of future frailty-risk in the Dunedin cohort of 1037 infants born the same year and followed to age 45. Participants' Pace of Aging was quantified by tracking declining function in 19 biomarkers indexing the cardiovascular, metabolic, renal, immune, dental, and pulmonary systems across ages 26, 32, 38, and 45 years. At age 45 in 2019, participants with faster Pace of Aging had more cognitive difficulties, signs of advanced brain aging, diminished sensory-motor functions, older appearance, and more pessimistic perceptions of aging. People who are aging more rapidly than same-age peers in midlife may prematurely need supports to sustain independence that are usually reserved for older adults. Chronological age does not adequately identify need for such supports.


Assuntos
Fragilidade , Humanos , Idoso , Pessoa de Meia-Idade , Fragilidade/epidemiologia , Envelhecimento/psicologia , Encéfalo , Políticas
14.
Front Aging Neurosci ; 13: 652575, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33889085

RESUMO

Disappointing results from clinical trials designed to delay structural brain decline and the accompanying increase in risk for dementia in older adults have precipitated a shift in testing promising interventions from late in life toward midlife before irreversible damage has accumulated. This shift, however, requires targeting midlife biomarkers that are associated with clinical changes manifesting only in late life. Here we explored possible links between one putative biomarker, distributed integrity of brain white matter, and two intervention targets, cardiovascular fitness and healthy lifestyle behaviors, in midlife. At age 45, fractional anisotropy (FA) derived from diffusion weighted MRI was used to estimate the microstructural integrity of distributed white matter tracts in a population-representative birth cohort. Age-45 cardiovascular fitness (VO2Max; N = 801) was estimated from heart rates obtained during submaximal exercise tests; age-45 healthy lifestyle behaviors were estimated using the Nyberg Health Index (N = 854). Ten-fold cross-validated elastic net predictive modeling revealed that estimated VO2Max was modestly associated with distributed FA. In contrast, there was no significant association between Nyberg Health Index scores and FA. Our findings suggest that cardiovascular fitness levels, but not healthy lifestyle behaviors, are associated with the distributed integrity of white matter in the brain in midlife. These patterns could help inform future clinical intervention research targeting ADRDs.

16.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33397808

RESUMO

The ability to control one's own emotions, thoughts, and behaviors in early life predicts a range of positive outcomes in later life, including longevity. Does it also predict how well people age? We studied the association between self-control and midlife aging in a population-representative cohort of children followed from birth to age 45 y, the Dunedin Study. We measured children's self-control across their first decade of life using a multi-occasion/multi-informant strategy. We measured their pace of aging and aging preparedness in midlife using measures derived from biological and physiological assessments, structural brain-imaging scans, observer ratings, self-reports, informant reports, and administrative records. As adults, children with better self-control aged more slowly in their bodies and showed fewer signs of aging in their brains. By midlife, these children were also better equipped to manage a range of later-life health, financial, and social demands. Associations with children's self-control could be separated from their social class origins and intelligence, indicating that self-control might be an active ingredient in healthy aging. Children also shifted naturally in their level of self-control across adult life, suggesting the possibility that self-control may be a malleable target for intervention. Furthermore, individuals' self-control in adulthood was associated with their aging outcomes after accounting for their self-control in childhood, indicating that midlife might offer another window of opportunity to promote healthy aging.


Assuntos
Envelhecimento/psicologia , Encéfalo/fisiologia , Longevidade/fisiologia , Autocontrole/psicologia , Adolescente , Adulto , Idoso , Envelhecimento/fisiologia , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Inteligência/fisiologia , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Classe Social
17.
Mol Psychiatry ; 26(8): 3829-3838, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-31822815

RESUMO

An individual's brainAGE is the difference between chronological age and age predicted from machine-learning models of brain-imaging data. BrainAGE has been proposed as a biomarker of age-related deterioration of the brain. Having an older brainAGE has been linked to Alzheimer's, dementia, and mortality. However, these findings are largely based on cross-sectional associations which can confuse age differences with cohort differences. To illuminate the validity of brainAGE as a biomarker of accelerated brain aging, a study is needed of a large cohort all born in the same year who nevertheless vary on brainAGE. In the Dunedin Study, a population-representative 1972-73 birth cohort, we measured brainAGE at age 45 years, as well as the pace of biological aging and cognitive decline in longitudinal data from childhood to midlife (N = 869). In this cohort, all chronological age 45 years, brainAGE was measured reliably (ICC = 0.81) and ranged from 24 to 72 years. Those with older midlife brainAGEs tended to have poorer cognitive function in both adulthood and childhood, as well as impaired brain health at age 3. Furthermore, those with older brainAGEs had an accelerated pace of biological aging, older facial appearance, and early signs of cognitive decline from childhood to midlife. These findings help to validate brainAGE as a potential surrogate biomarker for midlife intervention studies that seek to measure dementia-prevention efforts in midlife. However, the findings also caution against the assumption that brainAGE scores represent only age-related deterioration of the brain as they may also index central nervous system variation present since childhood.


Assuntos
Coorte de Nascimento , Disfunção Cognitiva , Adulto , Idoso , Envelhecimento , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Estudos Transversais , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Adulto Jovem
18.
Am J Psychiatry ; 178(2): 174-182, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32600153

RESUMO

OBJECTIVE: Neuroimaging research has revealed that structural brain alterations are common across broad diagnostic families of disorders rather than specific to a single psychiatric disorder. Such overlap in the structural brain correlates of mental disorders mirrors already well-documented phenotypic comorbidity of psychiatric symptoms and diagnoses, which can be indexed by a general psychopathology or p factor. The authors hypothesized that if general psychopathology drives the convergence of structural alterations common across disorders, then 1) there should be few associations unique to any one diagnostic family of disorders, and 2) associations with the p factor should overlap with those for the broader diagnostic families. METHODS: Analyses were conducted on structural MRI and psychopathology data collected from 861 members of the population-representative Dunedin Multidisciplinary Health and Development Study at age 45. RESULTS: Study members with high scores across three broad diagnostic families of disorders (externalizing, internalizing, thought disorder) exhibited highly overlapping patterns of reduced global and widely distributed parcel-wise neocortical thickness. Study members with high p factor scores exhibited patterns of reduced global and parcel-wise neocortical thickness nearly identical to those associated with the three broad diagnostic families. CONCLUSIONS: A pattern of pervasively reduced neocortical thickness appears to be common across all forms of mental disorders and may represent a transdiagnostic feature of general psychopathology. As has been documented with regard to symptoms and diagnoses, the underlying brain structural correlates of mental disorders may not exhibit specificity, and the continued pursuit of such specific correlates may limit progress toward more effective strategies for etiological understanding, prevention, and intervention.


Assuntos
Transtornos Mentais/patologia , Neocórtex/patologia , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Psicopatologia , Adulto Jovem
19.
J Gerontol A Biol Sci Med Sci ; 76(2): 318-327, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-32766674

RESUMO

BACKGROUND: To understand and measure the association between chronic inflammation, aging, and age-related diseases, broadly applicable standard biomarkers of systemic chronic inflammation are needed. We tested whether elevated blood levels of the emerging chronic inflammation marker soluble urokinase plasminogen activator receptor (suPAR) were associated with accelerated aging, lower functional capacity, and cognitive decline. METHODS: We used data from the Dunedin Study, a population-representative 1972-1973 New Zealand birth cohort (n = 1037) that has observed participants to age 45 years. Plasma suPAR levels were analyzed at ages 38 and 45 years. We performed regression analyses adjusted for sex, smoking, C-reactive protein, and current health conditions. RESULTS: Of 997 still-living participants, 875 (88%) had plasma suPAR measured at age 45. Elevated suPAR was associated with accelerated pace of biological aging across multiple organ systems, older facial appearance, and with structural signs of older brain age. Moreover, participants with higher suPAR levels had greater decline in physical function and cognitive function from childhood to adulthood compared to those with lower suPAR levels. Finally, improvements in health habits between ages 38 and 45 (smoking cessation or increased physical activity) were associated with less steep increases in suPAR levels over those years. CONCLUSIONS: Our findings provide initial support for the utility of suPAR in studying the role of chronic inflammation in accelerated aging and functional decline.


Assuntos
Envelhecimento/sangue , Inflamação/sangue , Receptores de Ativador de Plasminogênio Tipo Uroquinase/sangue , Adulto , Envelhecimento/fisiologia , Envelhecimento/psicologia , Biomarcadores/sangue , Cognição , Estudos de Coortes , Feminino , Humanos , Mediadores da Inflamação/sangue , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Nova Zelândia , Desempenho Físico Funcional , Solubilidade
20.
JAMA ; 324(19): 1970-1979, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33201203

RESUMO

Importance: Childhood lead exposure has been linked to disrupted brain development, but long-term consequences for structural brain integrity are unknown. Objective: To test the hypothesis that childhood lead exposure is associated with magnetic resonance imaging (MRI) measurements of lower structural integrity of the brain in midlife. Design, Setting, and Participants: The Dunedin Study followed a population-representative 1972-1973 birth cohort in New Zealand (N = 564 analytic sample) to age 45 years (until April 2019). Exposures: Childhood blood lead levels measured at age 11 years. Main Outcomes and Measures: Structural brain integrity at age 45 years assessed via MRI (primary outcomes): gray matter (cortical thickness, surface area, hippocampal volume), white matter (white matter hyperintensities, fractional anisotropy [theoretical range, 0 {diffusion is perfectly isotropic} to 100 {diffusion is perfectly anisotropic}]), and the Brain Age Gap Estimation (BrainAGE), a composite index of the gap between chronological age and a machine learning algorithm-estimated brain age (0 indicates a brain age equivalent to chronological age; positive and negative values represent an older and younger brain age, respectively). Cognitive function at age 45 years was assessed objectively via the Wechsler Adult Intelligence Scale IV (IQ range, 40-160, standardized to a mean of 100 [SD, 15]) and subjectively via informant and self-reports (z-score units; scale mean, 0 [SD, 1]). Results: Of 1037 original participants, 997 were alive at age 45 years, of whom 564 (57%) had received lead testing at age 11 years (302 [54%] male) (median follow-up, 34 [interquartile range, 33.7-34.7] years). Mean blood lead level at age 11 years was 10.99 (SD, 4.63) µg/dL. After adjusting for covariates, each 5-µg/dL higher childhood blood lead level was significantly associated with 1.19-cm2 smaller cortical surface area (95% CI, -2.35 to -0.02 cm2; P = .05), 0.10-cm3 smaller hippocampal volume (95% CI, -0.17 to -0.03 cm3; P = .006), lower global fractional anisotropy (b = -0.12; 95% CI, -0.24 to -0.01; P = .04), and a BrainAGE index 0.77 years older (95% CI, 0.02-1.51 years; P = .05) at age 45 years. There were no statistically significant associations between blood lead level and log-transformed white matter hyperintensity volume (b = 0.05 log mm3; 95% CI, -0.02 to 0.13 log mm3; P = .17) or mean cortical thickness (b = -0.004 mm; 95% CI, -0.012 to 0.004 mm; P = .39). Each 5-µg/dL higher childhood blood lead level was significantly associated with a 2.07-point lower IQ score at age 45 years (95% CI, -3.39 to -0.74; P = .002) and a 0.12-point higher score on informant-rated cognitive problems (95% CI, 0.01-0.23; P = .03). There was no statistically significant association between childhood blood lead levels and self-reported cognitive problems (b = -0.02 points; 95% CI, -0.10 to 0.07; P = .68). Conclusions and Relevance: In this longitudinal cohort study with a median 34-year follow-up, higher childhood blood lead level was associated with differences in some MRI measures of brain structure that suggested lower structural brain integrity in midlife. Because of the large number of statistical comparisons, some findings may represent type I error.


Assuntos
Encéfalo/efeitos dos fármacos , Cognição/efeitos dos fármacos , Chumbo/efeitos adversos , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Criança , Feminino , Humanos , Chumbo/sangue , Estudos Longitudinais , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Escalas de Wechsler
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...